Question 11.P.6: Consider the elastic scattering of 50MeV neutrons from a nuc...

Consider the elastic scattering of 50MeV neutrons from a nucleus. The phase shifts measured in this experiment are \delta_{0}=95^{\circ}, \delta_{1}=72^{\circ}, \delta_{2}=60^{\circ}, \delta_{3}=35^{\circ}, \delta_{4}=18^{\circ}, \delta_{5}=5^{\circ} ; all other phase shifts are negligible (i.e., \delta_{l} \simeq 0 for l ≥ 6).

(a) Find the total cross section.

(b) Estimate the radius of the nucleus.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) As \delta_{l} \simeq 0 for l ≥ 6 , equation (11.102)

\sigma=\sum_{l=0}^{\infty} \sigma_{l}=\frac{4 \pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1) \sin ^{2} \delta_{l},            (11.102)

yields

\sigma=\frac{4 \pi}{k^{2}} \sum_{l=0}^{6}(2 l+1) \sin ^{2} \delta_{l}

 

=\frac{4 \pi}{k^{2}}\left(\sin ^{2} \delta_{0}+3 \sin ^{2} \delta_{1}+5 \sin ^{2} \delta_{2}+7 \sin ^{2} \delta_{3}+9 \sin ^{2} \delta_{4}+11 \sin ^{2} \delta_{5}\right)=\frac{4 \pi}{k^{2}} \times 10.702.           (11.178)

To calculate k^{2}, we need simply to use the relation E=\hbar^{2} k^{2} /\left(2 m_{n}\right)=50 MeV, since the neutrons move as free particles before scattering. Using m_{n} c^{2}=939.57 MeV and \hbar c=197.33 MeV fm, we have

k^{2}=\frac{2 m_{n} E}{\hbar^{2}}=\frac{2\left(m_{n} c^{2}\right) E}{(\hbar c)^{2}}=\frac{2(939.57 MeV )(50 MeV )}{(197.33 MeV fm )^{2}}=2.41 fm ^{-2}.                    (11.179)

An insertion of (11.179) into (11.178) leads to

\sigma=\frac{4 \pi}{2.41 fm ^{-2}} \times 10.702=55.78 fm ^{2}=0.558 \text { barn }.               (11.180)

(b) At large values of l, when the neutron is at its closest approach to the nucleus, it feels mainly the effect of the centrifugal potential l(l+1) \hbar^{2} /\left(2 m_{n} r^{2}\right); the effect of the nuclear potential is negligible. We may thus use the approximations E \simeq l(l+1) \hbar^{2} /\left(2 m_{n} r_{c}^{2}\right) \simeq42 \hbar^{2} /\left(2 m_{n} r_{c}^{2}\right) where we have taken l \simeq 6, since \delta_{l} \simeq 0 for l ≥ 6 . A crude value of the radius of the nucleus is then given by

r_{c} \simeq \sqrt{\frac{21 \hbar^{2}}{m_{n} E}}=\sqrt{\frac{21(\hbar c)^{2}}{\left(m_{n} c^{2}\right) E}}=\sqrt{\frac{21(197.33 MeV fm )^{2}}{(939.57 MeV )(50 MeV )}}=4.17 fm.          (11.181)

Related Answered Questions