Question 17.3: A friction-drive stainless steel metal belt runs over two 4-...

A friction-drive stainless steel metal belt runs over two 4-in metal pulleys ( f = 0.35).
The belt thickness is to be 0.003 in. For a life exceeding 10^{6} belt passes with smooth torque (K_{s}= 1), (a) select the belt if the torque is to be 30 lbf · in, and (b) find the initial tension F_{i} .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From step 1, \phi = θ_{d} = π, therefore exp(0.35π) = 3.00. From step 2,

(S_{f} )_{10^{6}} = 14.17(10^{6})(10^{6})^{−0.407} = 51  210  psi

From steps 3, 4, 5, and 6,

F_{1a} =\left[ 51  210 −\frac{28(10^{6})0.003}{(1 − 0.285^{2})4}\right]0.003b =85.1b  lbf                     (1)

ΔF = 2T/D = 2(30)/4 = 15  lbf
F_{2} = F_{1a} − ΔF = 85.1b − 15  lbf                     (2)
F_{i} =\frac{F_{1a} + F_{2}}{2} =\frac{85.1b + 15}{2}  lbf               (3)

From step 7,

b_{min} =\frac{ΔF}{a} \frac{exp( f  \phi)}{exp( f  \phi) − 1} =\frac{15}{85.1} \frac{3.00}{3.00 − 1} = 0.264  in

Select an available 0.75-in-wide belt 0.003 in thick.

Eq. (1):                   F_{1} = 85.1(0.75) = 63.8 lbf
Eq. (2):                  F_{2} = 85.1(0.75) − 15 = 48.8 lbf
Eq. (3):                F_{i} = (63.8 + 48.8)/2 = 56.3 lbf

f^{′} =\frac{1}{\phi} ln \frac{F_{1}}{F_{2}} =\frac{1}{π} ln \frac{63.8}{48.8} = 0.0853

Note f^{′} < f , that is, 0.0853 < 0.35.

 

The selection of a metal flat belt can consist of the following steps:

1 Find exp( f \phi) from geometry and friction
2 Find endurance strength

S_{f} = 14.17(10^{6})N^{−0.407}_{p}                      301, 302 stainless
S_{f} = S_{y}/3                           others

3 Allowable tension

F_{1a} =\left[ S_{f} −\frac{Et}{(1 − ν^{2})D}\right] tb = ab

4   ΔF = 2T/D
5    F_{2} = F_{1a} − F = ab − ΔF
6     F_{i} =\frac{F_{1a} + F_{2}}{2} =\frac{ab + ab − ΔF}{2} = ab − \frac{ΔF}{2}
7      b_{min} =\frac{ΔF}{a} \frac{exp( f \phi)}{exp( f \phi) − 1}
8      Choose b > b_{min}, F_{1} = ab, F_{2} = ab − ΔF, F_{i} = ab − F/2, T = FD/2

Related Answered Questions