Question 14.15: A solution is made by dissolving 100. g of ethylene glycol (...

A solution is made by dissolving 100. g of ethylene glycol (C_2H_6O_2) in 200. g of water. What is the freezing point of this solution?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

To calculate the freezing point of the solution, we first need to calculate \Delta t_f ,the change in freezing point. Use the equation

\Delta t_f= mK_f = \frac{mol   solute}{kg   solvent} \times   K_f

K_f   (for    water):     \frac{1.86^\circ C   kg   solvent}{mol    solute}  (from Table 14.5)

mol  solute : (100.   \cancel{g   C_2H_6O_2} ) (\frac{1   mol  C_2H_6O_2}{62.07  \cancel{g   C_2H_6O_2} } )

= 1.61 mol C_2H_6O_2

kg solvent: (200.   \cancel{g}   H_2O) (\frac{1   kg}{1000  \cancel{g}} ) =0.200   kg   H_2O

\Delta t_f= (\frac{1.61   \cancel{mol   C_2H_6O_2}}{0.200   \cancel{kg    H_2O}} ) (\frac{1.86^\circ C    \cancel{kg    H_2O}}{1     \cancel{mol   C_2H_6O_2}} ) = 15.0^\circ C

The freezing point depression, 15.0°C, must be subtracted from 0°C, the freezing point of the pure solvent (water):

freezing point of solution = freezing point of solvent – \Delta t_f

=0.0°C – 15.0°C = -15.0°C

Therefore, the freezing point of the solution is -15.0°C .This solution will protect an automobile radiator down to -15.0°C (5°F).

TABLE 14.5 Freezing Point Depression and Boiling Point Elevation Constants of Selected Solvents
Solvent Freezing point of pure solvent (°C) Freezing point depression constant, K_f \frac{^\circ \text{C kg solvent}}{\text{mol solute}} Boiling point of pure solvent of pure solven (°C) Boiling point elevation constant K_b \frac{^\circ \text{C kg solvent}}{\text{mol solute}}
Water 0.00 1.86 100.0 0.512
Acetic acid 16.6 3.90 118.5 3.07
Benzene 5.5 5.1 80.1 2.53
Camphor 178 40 208.2 5.95

Related Answered Questions

READ     Knowns      mass = 28.0 g NaOH M = 2.00 m...