Verify formula (5.3).
e^{k_V }= w_1e^{k_1} + w_2e^{k_2} (5.3)
Verify formula (5.3).
e^{k_V }= w_1e^{k_1} + w_2e^{k_2} (5.3)
The initial and final values of the portfolio are
V (0) = x_{1}S_{1}(0) + x_{2}S_{2}(0),
V (1) = x_{1}S_{1}(0) + x_{2}S_{2}(0)e^{{k_{2}}}
= V (0e^{k_{1}})(w_{1}e^{k_{1}} + w_{2}e^{k_{2}}).
As a result, the return on the portfolio is
e^{k_V} =\frac{V (1)}{V (0)} = w_{1}e^{k_{1}} + w_{2}e^{k_{2}} .