Question 6.14: What should the reservoir level h be to maintain a flow of 0...

What should the reservoir level h be to maintain a flow of 0.01 m^3/s through the commercial steel annulus 30 m long shown in Fig. E6.14? Neglect entrance effects and take ρ = 1000 kg/m^3 and ν = 1.02 × 10^{-6}  m^2/s for water.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

• Assumptions: Fully developed annulus flow, minor losses neglected.
• Approach: Determine the Reynolds number, then find f and h_f and thence h.
• Property values: Given ρ = 1000 kg/m^3 and ν = 1.02E-6 m^2/s.

• Solution step 1: Calculate the velocity, hydraulic diameter, and Reynolds number:

V = \frac{Q}{A} = \frac{0.01  m^3/s}{\pi [(0.05  m)^2 (0.03  m)^2]} = 1.99 \frac{m}{s} D_h = 2(a – b) = 2(0.05  m – 0.03  m) = 0.04  m

Re_{D_h} = \frac{VD_h}{\nu} = \frac{(1.99  m/s)(0.04  m)}{1.02E-6  m^2/s} = 78,000                        (turbulent flow)

• Solution step 2: Apply the steady flow energy equation between sections 1 and 2:

\frac{p_1}{\rho g} + \frac{\alpha_1 V_1^2}{2g} + z_1 = \frac{p_2}{\rho g} + \frac{\alpha_2 V_2^2}{2g} + z_2 + h_f

or              h = \frac{\alpha_2 V_2^2}{2g} + h_f = \frac{V_2^2}{2g} \left(\alpha_2 + f\frac{L}{D_h}\right)                       (1)

Note that z_1 = h. For turbulent flow, from Eq. (3.43c), we estimate \alpha_2 ≈ 1.03

\beta = \frac{(1 + m)^2(2 + m)^2}{2(1 + 2m)(2 + 2m)}                 (3.43c)

• Solution step 3: Determine the roughness ratio and the friction factor. From Table 6.1, for (new) commercial steel pipe, ε = 0.046 mm. Then

\frac{\epsilon}{D_h} = \frac{0.046  mm}{40  mm} = 0.00115
Table 6.1: ε
Material Condition ft mm Uncertainty, %
Steel Sheet metal, new 0.0002 0.05 ±60
Stainless, new 7E-06 0.002 ±50
Commercial, new 0.0002 0.046 ±30
Riveted 0.01 3 ±70
Rusted 0.007 2 ±50
Iron Cast, new 0.0009 0.26 ±50
Wrought, new 0.0002 0.046 ±20
Galvanized, new 0.0005 0.15 ±40
Asphalted cast 0.0004 0.12 ±50
Brass Drawn, new 7E-06 0.002 ±50
Plastic Drawn tubing 5E-06 0.0015 ±60
Glass Smooth Smooth
Concrete Smoothed 0.0001 0.04 ±60
Rough 0.007 2 ±50
Rubber Smoothed 3E-05 0.01 ±60
Wood Stave 0.0016 0.5 ±40

For a reasonable estimate, use Re_{D_h} to estimate the friction factor from Eq. (6.48):

\frac{1}{\sqrt{f}} = -2.0 \log_{10} \left(\frac{0.00115}{3.7} + \frac{2.51}{78,000 \sqrt{f}}\right)                            solve for f ≈ 0.0232

For slightly better accuracy, we could use D_{eff} = D_h / \zeta. From Table 6.3, for b/a = 3/5, 1/ζ = 0.67. Then D_{eff} = 0.67(40 mm) = 26.8 mm, whence Re_{D_{eff}} = 52,300, \epsilon /D_{eff} = 0.00172, and f_{eff} ≈ 0.0257. Using the latter estimate, we find the required reservoir level from Eq. (1):

h = \frac{V^2_2}{2g} \left(\alpha_2 + f_{eff}\frac{L}{D_h}\right) = \frac{(1.99  m/s)^2}{2(9.81  m/s)^2} \left[1.03 + 0.0257 \frac{30  m}{0.04  m}\right] = 4.1  m
Table 6.3 Laminar Friction Factors
for a Concentric Annulus
b/a f Re_{D_h} D_{eff}/D_h = 1/ \zeta
0.0 64.0 1.000
0.00001 70.09 0.913
0.0001 71.78 0.892
0.001 74.68 0.857
0.01 80.11 0.799
0.05 86.27 0.742
0.1 89.37 0.716
0.2 92.35 0.693
0.4 94.71 0.676
0.6 95.59 0.670
0.8 95.92 0.667
1.0 96.0 0.667

• Comments: Note that we do not replace D_h  by  D_{eff} in the head loss term fL/D_h, which comes from a momentum balance and requires hydraulic diameter. If we used the simpler friction estimate, f ≈ 0.0232, we would obtain h ≈ 3.72 m, or about 9 percent lower.

Related Answered Questions