Question 17.3: The Resistance of Nichrome Wire Goal Combine the concept of ...

The Resistance of Nichrome Wire

Goal Combine the concept of resistivity with Ohm’s law.

Problem (a) Calculate the resistance per unit length of a 22-gauge nichrome wire of radius 0.321 mm. (b) If a potential difference of 10.0 V is maintained across a 1.00-m length of the nichrome wire, what is the current in the wire? (c) The wire is melted down and recast with twice its original length. Find the new resistance RN R_{N} as a multiple of the old resistance RO R_{O} .
Strategy Part (a) requires substitution into Equation 17.5, after calculating the cross-sectional area, while part (b) is a matter of substitution into Ohm’s law. Part (c) requires some algebra. The idea is to take the expression for the new resistance and substitute expressions for lN and AN l_{N} \text { and } A_{N} , the new length and cross-sectional area, in terms of the old length and cross-section. For the area substitution, use the fact that the volumes of the old and new wires are the same.

R=ρlA R=\rho \frac{l}{A}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Calculate the resistance per unit length.
Find the cross-sectional area of the wire:

A=πr2=π(0.321×103m)2=3.24×107m2 A=\pi r^{2}=\pi\left(0.321 \times 10^{-3} m \right)^{2}=3.24 \times 10^{-7} m ^{2}

Obtain the resistivity of nichrome from Table 17.1, solve Equation 17.5 for R/l, and substitute:

Rl=ρA=1.5×106Ωm3.24×107m2=4.6Ω/m \frac{R}{l}=\frac{\rho}{A}=\frac{1.5 \times 10^{-6} \Omega \cdot m }{3.24 \times 10^{-7} m ^{2}}=4.6 \Omega / m

(b) Find the current in a 1.00-m segment of the wire if the potential difference across it is 10.0 V.

Substitute given values into Ohm’s law:

I=ΔVR=10.0V4.6Ω=2.2A I=\frac{\Delta V}{R}=\frac{10.0 V }{4.6 \Omega}=2.2 A

(c) If the wire is melted down and recast with twice its original length, find the new resistance as a multiple of the old.

Find the new area AN in terms of the old area AO A_{N} \text { in terms of the old area } A_{O} , using the fact the volume doesn’t change and lN=2lO l_{N}=2 l_{O} :

VN=VOANlN=AOlOAN=AO(lO/lN)AN=AO(lO/2lO)=AO/2\begin{aligned}&V_{N}=V_{O} \rightarrow A_{N} l_{N}=A_{O} l_{O} \rightarrow A_{N}=A_{O}\left(l_{O} / l_{N}\right) \\&A_{N}=A_{O}\left(l_{O} / 2 l_{O}\right)=A_{O} / 2\end{aligned}

Substitute into Equation 17.5:

RN=ρlNAN=ρ(2lO)(AO/2)=4ρlOAO=4ROR_{N}=\frac{\rho l_{N}}{A_{N}}=\frac{\rho\left(2 l_{O}\right)}{\left(A_{O} / 2\right)}=4 \frac{\rho l_{O}}{A_{O}}=4 R_{O}

Remarks From Table 17.1, the resistivity of nichrome is about 100 times that of copper, a typical good conductor. Therefore, a copper wire of the same radius would have a resistance per unit length of only 0.052 Ω/m, and a 1.00-m length of copper wire of the same radius would carry the same current (2.2 A) with an applied voltage of only 0.115 V. Because of its resistance to oxidation, nichrome is often used for heating elements in toasters, irons, and electric heaters.

 

TABLE 17.1

Resistivities and Temperature Coefficients of Resistivity for Various Materials (at 20°C)
 Temperature Coefficient  of Resistivity  Material  Resistivity [(ΩC)1]\begin{array}{ccc} & &\begin{array}{c}\text { Temperature Coefficient } \\\text { of Resistivity }\end{array} \\\text { Material } & \text { Resistivity } & {\left[(\Omega \cdot C )^{-1}\right]} \\\end{array}
 Silver 1.59×1083.8×103 Copper 1.7×1083.9×103 Gold 2.44×1083.4×103 Aluminum 2.82×1083.9×103 Tungsten 5.6×1084.5×103 Iron 10.0×1085.0×103 Platinum 11×1083.92×103 Lead 22×1083.9×103 Nichrome a150×1080.4×103 Carbon 3.5×1050.5×103 Germanium 0.4648×103 Silicon 64075×103 Glass 10101014 Hard rubber 1013 Sulfur 1015 Quartz (fused) 75×1016\begin{array}{lcc} \text { Silver } & 1.59 \times 10^{-8} & 3.8 \times 10^{-3} \\\text { Copper } & 1.7 \times 10^{-8} & 3.9 \times 10^{-3} \\\text { Gold } & 2.44 \times 10^{-8} & 3.4 \times 10^{-3} \\\text { Aluminum } & 2.82 \times 10^{-8} & 3.9 \times 10^{-3} \\\text { Tungsten } & 5.6 \times 10^{-8} & 4.5 \times 10^{-3} \\\text { Iron } & 10.0 \times 10^{-8} & 5.0 \times 10^{-3} \\\text { Platinum } & 11 \times 10^{-8} & 3.92 \times 10^{-3} \\\text { Lead } & 22 \times 10^{-8} & 3.9 \times 10^{-3} \\\text { Nichrome }^{a} & 150 \times 10^{-8} & 0.4 \times 10^{-3} \\\text { Carbon } & 3.5 \times 10^{5} & -0.5 \times 10^{-3} \\\text { Germanium } & 0.46 & -48 \times 10^{-3} \\\text { Silicon } & 640 & -75 \times 10^{-3} \\\text { Glass } & 10^{10}-10^{14} & \\\text { Hard rubber } & \approx 10^{13} & \\\text { Sulfur } & 10^{15} & \\\text { Quartz (fused) } & 75 \times 10^{16} & \\\end{array}
a A nickel-chromium alloy commonly used in heating elements. { }^{a} \text { A nickel-chromium alloy commonly used in heating elements. }

Related Answered Questions