Question 8.47: A 1500 kVA, star-connected, 6.6-kV salient-pole synchronous ...

A 1500 kVA, star-connected, 6.6-kV salient-pole synchronous motor has X_{d} = 23.2 \Omega and X_{q}=14.5 \Omega / \text { phase } respectively; armature resistance being negligible.

Calculate the excitation emf when the motor is supplying rated load at 0.8 leading pf.

What maximum load the motor can supply without loss of synchronism, if the excitation is cut off? What will be the value of torque angle under this condition.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\phi=-\cos ^{-1} 0.8=-36.9^{\circ}

 

I_{a}=\frac{1500}{\sqrt{3} \times 6.6}=131 A ; \quad V_{t}=\frac{6.6}{\sqrt{3}}=3.81 kV

 

\tan \psi=\frac{V_{t} \sin \phi-I_{a} X_{q}}{V_{t} \cos \phi+I_{a} R_{a}}

 

=\frac{-3.81 \times 0.6-0.131 \times 14.5}{3.81 \times 0.8+0}=-1.373

 

Or                                                  \psi=-53.9^{\circ}

 

\delta=\phi-\psi=-36.9^{\circ}-\left(-53.9^{\circ}\right)=17^{\circ}

 

E_{f}=V_{t} \cos \delta-I_{d} X_{d} ; \quad I_{d}=I_{a} \sin \psi=0.131 \times \sin -53.9^{\circ}=-0.106

 

=3.81 \cos 17^{\circ}+0.106 \times 23.2

= 6.1 kV or 10.57 kV (line)

With excitation cut off, output is only reluctance power

P_{e}=V_{t}^{2}\left(\frac{X_{d}-X_{q}}{2 X_{d} X_{q}}\right) \sin 2 \delta

 

=(6.6)^{2} \times \frac{23.2-14.5}{2 \times 23.2 \times 14.5}=563 kW

Related Answered Questions