Question 9.11: A 150 kW, 3000 V, 50 Hz, 6-pole star-connected induction mot...

A 150 kW, 3000 V, 50 Hz, 6-pole star-connected induction motor has a starconnected slip-ring rotor with a transformation ratio of 3.6 (stator/rotor). The rotor resistance is 0.1 \Omega / \text { phase } and its per phase leakage inductance is 3.61 mH. The stator impedance may be neglected. Find (a) the starting current and torque on rated voltage with short-circuited slip-rings, and (b) the necessary external resistance to reduce the rated-voltage starting current to 30 A and the corresponding starting torque.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

R_{2}=0.1 \Omega                                               X_{2}=314 \times 3.61 \times 10^{-3}=1.13 \Omega

 

R_{2}^{\prime}=(3.6)^{2} \times 0.1=1.3 \Omega                                         X_{2}^{\prime}=(3.6)^{2} \times 1.13=14.7 \Omega

 

(a)                                   I_{s}=\frac{3000 / \sqrt{3}}{\sqrt{(1.3)^{2}+(14.7)^{2}}}=117.4 A

 

T_{s}=\frac{3}{\omega_{s}} \cdot \frac{V^{2} R_{2}^{\prime 2}}{R_{2}^{\prime 2}+X_{2}^{\prime 2}}

 

\omega_{s}=\frac{2 \pi \times 1000}{60}=104.7 rad / s

 

T_{s}=\frac{3}{104.7} \cdot \frac{(3000 / \sqrt{3})^{2} \times 1.3}{(1.3)^{2}+(14.7)^{2}}=513.1 Nm

 

(b)                                      I_{s}=\frac{3000 \sqrt{3}}{\sqrt{\left(1.3+R_{e x t}^{\prime}\right)^{2}+(14.7)^{2}}}=30 A

 

R_{\text {ext }}^{\prime}=54.33

 

R_{e x t}=54.53 /(3.6)^{2}=4.21 \Omega

 

T_{s}=\frac{3}{104.7} \cdot \frac{(3000 \sqrt{3})^{2} \times(1.3+54.33)}{(1.3+54.33)^{2}+(14.7)^{2}}=1440 Nm

Remark By adding an external resistance in the rotor, starting current reduces by a factor of 117.4/30 = 3.91 while the starting torque increases by 1440/513.1 = 2.8.

Related Answered Questions