Question 9.14: A 440 V, 50 Hz, 4-pole 3-phase, delta-connected motor has a ...

A 440 V, 50 Hz, 4-pole 3-phase, delta-connected motor has a leakage impedance of (0.3 + j 5.5 + 0.25/s) \Omega /phase  (delta phase) referred to the stator. The stator to rotor voltage ratio is 2.5. Determine the external resistance to be inserted in each star phase of the rotor winding such that the motor develops a gross torque of 150 Nm at a speed of 1250 rpm.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\omega_{s}=\frac{2 \pi \times 1500}{60}=157.1 rad / s

 

s=\frac{1500-1250}{1500}=0.167

Total leakage impedance referred to stator (equivalent star basis)

=\frac{1}{3}[(0.3+0.25 / s)+j 5.5]=\left(0.1+\frac{0.083}{s}+j 1.83\right) \Omega / \text { phase }(\text { star })

From Eq (9.22)  T=\frac{3}{\omega_{s}} \cdot I_{2}^{\prime 2}\left(R_{2}^{\prime} / s\right) =\frac{3}{\omega_{s}} \cdot \frac{V_{T H}^{2}\left(R_{2}^{\prime} / s\right)}{\left(R_{T H}+R_{2}^{\prime} / s\right)^{2}+\left(X_{T H}+X_{2}^{\prime}\right)^{2}} with

R_{2 t}^{\prime}=R_{2}^{\prime}+R_{ ext }^{\prime} ; \quad R_{2}^{\prime}=0.083 \Omega, R_{2 t}^{\prime}=R_{2}^{\prime}        (total)

 

T=\frac{3}{\omega_{s}} \cdot \frac{V^{2}\left(R_{2 t}^{\prime} / s\right)}{\left(0.1+R_{2 t}^{\prime} / s\right)^{2}+\left(X_{1}+X_{2}^{\prime}\right)^{2}}

Substituting values

150=\frac{3}{157.1} \cdot \frac{(440 / \sqrt{3})^{2}\left(R_{2 t}^{\prime} / 00.167\right)}{\left(0.1+R_{2 t}^{\prime} / 0.167\right)^{2}+(1.83)^{2}}

 

R_{2 t}^{\prime}-1.34 R_{2 t}^{\prime}+0.093=0

 

R_{2 t}^{\prime}=1.27 \Omega ; 0.073 \Omega

(The second value is less than   R_{2}^{\prime}=0.083 \Omega )

 

R_{ ext }^{\prime}=1.27-0.083 \Omega

 

R_{\text {ext }}(\text { rotor })=\frac{1.19}{(2.5)^{2}}=1.19 \Omega / \text { phase }

Related Answered Questions