Motor circuit seen on rotor side is shown in Fig. 9.45; stator impedance having been neglected.
I_{2}=\frac{V_{1} / a}{\sqrt{\left(R_{2} / s\right)^{2}+X_{2}^{2}}}
T=\frac{3}{\omega_{s}} \cdot I_{2}^{2} R_{2} / s
=\frac{3}{\omega_{s}} \cdot \frac{(V / a)^{2}\left(R_{2} / s\right)}{\left(R_{2} / s\right)^{2}+X_{2}^{2}} (i)
T(\text { start })=\frac{3}{\omega_{s}} \cdot \frac{(V / a)^{2} R_{2}}{R_{2}^{2}+X_{2}^{2}} ; s=1 (ii)
Let external resistance added to rotor circuit be R_{2} (ext). Then
R_{2}(\text { total })=R_{2 t}=R_{2}+R_{2}(\text { ext }) (iii)
Then T( start )=\frac{3}{\omega_{s}} \cdot \frac{(V / a)^{2} R_{2 t}}{R_{2 t}^{2}+X_{2}^{2}} (iv)
(a) a=2.5, \quad X_{2}=0.4 \Omega, \quad R_{2}=0.08 \Omega
T(start) = T(load) = 250 Nm; This is minimum starting torque.
Actual starting must be sufficiently more than this.
V=400 / \sqrt{3}=231 V
n_{s}=750 rpm or \omega_{s}=78.54 rad / s
Substituting values in Eq. (ii)
250=\left(\frac{3}{78.54}\right) \cdot \frac{(231 / 2.5)^{2} R_{2 t}}{R_{2 t}^{2}+(0.4)^{2}} (iv)
Or R_{2 t}^{2}-1.304 R_{2 t}+0.16=0
Or R_{2 t}=0.137 \Omega, 1.167 \Omega
The T-s characteristics with these two values of R_{2t} are drawn in Fig. 9.46. It is easy to see that with R_{2 l}=1.167 \Omega the motor will not start as motor torque reduces \left(T_{\text {motor }}< T_{\text {load }}\right) ) for s < 1.
So we select R_{2 t}=0.137 \Omega
\Rightarrow R_{2}( ext )=0.137-0.08=0.057 \Omega
(b)(i) R_{2 t}=0.137 \Omega ; External resistance included in circuit.
Substituting values in Eq. (i)
250=\left(\frac{3}{78.54}\right) \frac{(231 / 2.5)^{2}\left(R_{2 t} / s\right)}{\left(R_{2 t} / s\right)^{2}+(0.4)^{2}}
This equation has the same solution as Eq. (v). Thus
R_{2 t} / s=0.137,0.167
With R_{2 t}=0.137 \Omega , we get
s = 1,0.137/1.167
= 0.117 (as shown in Fig. 9.42)
Motor speed, n = 750 (l – 0.117) = 662 rpm
(ii) With external resistance cut out
250=\left(\frac{3}{78.54}\right) \frac{(231 / 2.5)^{2}\left(R_{2} / s\right)}{\left(R_{2} / s\right)^{2}+(0.4)^{2}}
The solution would yield as before
R_{2} / s=0.137, R_{2} / s=1.167
The solution points are indicated in the T-s characteristic drawn in Fig. 9.47. The motor will run at
s = 0.067 \Rightarrow 700 rpm
The point s = 0.584 on T-s characteristic is unstable as
the torque-speed slope here is positive and the motor will speed up beyond this.