Question 10.6: The 50° triangular channel in Fig. E10.6 has a flow rate Q =...

The 50° triangular channel in Fig. E10.6 has a flow rate Q = 16 m^3/s. Compute (a) y_c,  (b)  V_c,  and  (c)  S_c if n = 0.018.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Part (a)

This is an easy cross section because all geometric quantities can be written directly in terms of depth y:

P = 2y csc 50°                      A = y^2 cot 50°

R_h = \frac{1}{2}y \cos 50^{\circ}                          b_0 = 2y \cot 50^{\circ}                                       (1)

The critical flow condition satisfies Eq. (10.37a):

A_c = \left(\frac{b_0Q^2}{g}\right)^{1/3}                                              (10.37a)

gA^3_c = b_0Q^2

or                      g(y^2_c \cot 50^{\circ})^3 = (2y_c \cot 50^{\circ})Q^2

y_c = \left(\frac{2Q^2}{g \cot^2 50^{\circ}}\right)^{1/5} = \left[\frac{2(16)^2}{9.81(0.839)^2}\right]^{1/5} = 2.37  m

Part (b)

With y_c known, from Eqs. (1) we compute P_c = 6.18  m,  R_{hc} = 0.760  m,  A_c = 4.70  m^2,  and  b_{0c} = 3.97  m. The critical velocity from Eq. (10.37b) is

V_c = \frac{Q}{A_c} = \left(\frac{gA_c}{b_0}\right)^{1/2}                                                  (10.37b)

V_c = \frac{Q}{A_c} = \frac{16  m^3/s}{4.70  m^2} = 3.41  m/s

Part (c)

With n = 0.018, we compute from Eq. (10.38) a critical slope:

S_c = \frac{n^2gA_c}{\alpha^2 b_0 R^{4/3}_{hc}} = \frac{n^2 V^2_c}{\alpha^2 R_{hc}^{4/3}} = \frac{n^2g}{\alpha^2 R^{1/3}_{hc}} \frac{P}{b_0} = \frac{f}{8} \frac{P}{b_0}                                              (10.38)

S_c = \frac{gn^2P}{\alpha^2 R^{1/3}_h b_0} = \frac{9.81(0.018)^2(6.18)}{1.0(0.760)^{1/3}(3.97)} = 0.00542

Related Answered Questions