Question 9.17: A 50 Hz, 3-phase induction motor has a rated voltage V1. The...

A 50 Hz, 3-phase induction motor has a rated voltage V1 V_{1}. The motor’s breakdown torque at rated voltage and frequency occurs at a slip of 0.2. The motor is instead run from a 60 Hz supply of voltage V2 V_{2}. The stator impedance can be neglected.

(a) If V2=V1 V_{2}=V_{1}, find the ratio of currents and torques at starting. Also find the ratio of maximum torques.

(b) Find the ratio V2 /V1 such that the motor has the same values of starting current and torque at 50 and 60 Hz.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)                                   smax,T=R2X2=0.2 s_{\max , T}=\frac{R_{2}^{\prime}}{X_{2}^{\prime}}=0.2

Where  X2= X_{2}^{\prime}= = standstill 50 Hz rotor reactance

At rated voltage (V1 V_{1} ) and frequency (50 Hz)

Is(1)=I2(1)=V1R22+X22 I_{s}(1)=I_{2}^{\prime}(1)=\frac{V_{1}}{\sqrt{R_{2}^{\prime 2}+X_{2}^{\prime 2}}}                                   (i)

Ts(1)=V12R2R22+X22 T_{s}(1)=\frac{V_{1}^{2} R_{2}^{\prime}}{R_{2}^{\prime 2}+X_{2}^{\prime 2}}                                    (ii)

Tmax(1)=3ωs0.5V12X2 T_{\max }(1)=\frac{3}{\omega_{s}} \cdot \frac{0.5 V_{1}^{2}}{X_{2}^{\prime}}                                            (iii)

At voltage V2 V_{2}  and frequency 60 Hz

I2(2)=I2(2)=V2R22+(65)2X22 I_{2}(2)=I_{2}^{\prime}(2)=\frac{V_{2}}{\sqrt{R_{2}^{\prime 2}+\left(\frac{6}{5}\right)^{2} X_{2}^{\prime 2}}}                                              (iv)

Ts(2)=V22R2R22+(65)2X22 T_{s}(2)=\frac{V_{2}^{2} R_{2}^{\prime}}{R_{2}^{\prime 2}+\left(\frac{6}{5}\right)^{2} X_{2}^{\prime 2}}                                              (v)

Tmax(2)=3(65)ωs0.5V22(65)X2 T_{\max }(2)=\frac{3}{\left(\frac{6}{5}\right) \omega_{s}} \frac{0.5 V_{2}^{2}}{\left(\frac{6}{5}\right) X_{2}^{\prime}}                                                    (vi)

Dividing Eqs (iv), (v) and (vi) respectively by Eqs (i), (ii) and (iii)

Is(2)Is(1)=V2V1R22+X22R22+(65)2X22 \frac{I_{s}(2)}{I_{s}(1)}=\frac{V_{2}}{V_{1}} \cdot \sqrt{\frac{R_{2}^{\prime 2}+X_{2}^{\prime 2}}{R_{2}^{\prime 2}+\left(\frac{6}{5}\right)^{2} X_{2}^{\prime 2}}}

 

=V2V1smax,T2+1smax,T2+(65)2 =\frac{V_{2}}{V_{1}} \cdot \sqrt{\frac{s_{\max , T}^{2}+1}{s_{\max , T}^{2}+\left(\frac{6}{5}\right)^{2}}}

 

=1×(0.2)2+1(0.2)2+(65)2=0.838 =1 \times \sqrt{\frac{(0.2)^{2}+1}{(0.2)^{2}+\left(\frac{6}{5}\right)^{2}}}=0.838

 

Ts(2)Ts(1)=V22V12smax,T2+1smax,T2+(65)2 \frac{T_{s}(2)}{T_{s}(1)}=\frac{V_{2}^{2}}{V_{1}^{2}} \cdot \frac{s_{\max , T}^{2}+1}{s_{\max , T}^{2}+\left(\frac{6}{5}\right)^{2}}

 

=1×(0.2)2+1(0.2)2+(65)2=0.703 =1 \times \frac{(0.2)^{2}+1}{(0.2)^{2}+\left(\frac{6}{5}\right)^{2}}=0.703

 

Tmax(2)Tmax(1)=V22V12(56)2=0.694 \frac{T_{\max }(2)}{T_{\max }(1)}=\frac{V_{2}^{2}}{V_{1}^{2}}\left(\frac{5}{6}\right)^{2}=0.694

 

(b)                                      V22V12(0.2)2+1(0.2)2+(65)2=1 \frac{V_{2}^{2}}{V_{1}^{2}} \cdot \sqrt{\frac{(0.2)^{2}+1}{(0.2)^{2}+\left(\frac{6}{5}\right)^{2}}}=1

 

V2V1=1.19 \frac{V_{2}}{V_{1}}=1.19

This ratio will also give equal staring torques.

Related Answered Questions