Question 10.2: A test on the main winding of a 1 kW, 4-pole. 2 15 V, 50 Hz,...

A test on the main winding of a 1 kW, 4-pole. 2 15 V, 50 Hz, single-phase induction motor gave the following results:

No-load test

Rotor-blocked test

V_{0} = 215 V

V_{SC} = 85 A

I0 = 3.9 A

I_{SC} = 9.80 A

P_{0} = 185 W

P_{SC} = 390 W

R_{1} = 1.6 \Omega

Given:

(a) Calculate the parameters of the circuit model assuming that the magnetizing reactance hangs at the input terminals of the model.

(b) Determine the line current power factor, shaft torque and efficiency of the motor at a speed of 1440 rpm

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Parameters of the circuit model are calculated using both no-load as well as rotor-blocked tests.

(i) No-load test: Assuming the slip to be zero, the circuit model on no-load is drawn in Fig. 10.7 with magnetizing reactance at input terminals

Since the backward circuit is short-circuited for practical purposes, as X being magnetizing reactance is much larger

\frac{X}{2}=\frac{215}{3.9}=55.1 \Omega

Rotational loss                                       P_{0}=185 W

(ii) Rotor-blocked test (s = 1): The circuit model on rotor-blocked test is shown in Fig. 10.8

390=85 \times 9.8 \times \cos \phi_{S C}

Or                                            \phi_{S C}=62^{\circ} lagging

With reference to Fig. 10.8

\bar{I}_{e}=\frac{V_{S C}}{j X}=\frac{85}{j 2 \times 55.1}=-j 0.77 A

 

\bar{I}_{m}^{\prime}=\bar{I}_{S C}-\bar{I}_{e}=9.8 \angle-62^{\circ}-(-j 0.77)

 

=4.6-j 7.88=9.13 \angle-59.7^{\circ}

 

\bar{Z}_{f}^{\prime}=\left(R_{1}+R_{2}\right)+j\left(X_{1}+X_{2}\right)

 

\frac{V_{S C}}{I_{m}^{\prime}}=\frac{85}{9.13 \angle-59.7^{\circ}}=9.31 \angle 59.7^{\circ}

 

= 4.7 + j 8.04

 

R_{1}+R_{2}=4.7 \Omega

 

R_{1}=1.6 \Omega  (given)

 

R_{2}=3.1 \Omega

 

X_{1}+X_{2}=8.04 \Omega

 

The circuit model with parameter values is drawn in Fig. 10.9.

 

(b)                                                                   s=\frac{1500-1440}{1500}=0.04

1.55 / s=\frac{1.55}{0.04}=38.75 ; 1.55 /(2-s)=\frac{1.55}{1.96}=0.79

 

\bar{Z}_{f} \text { (total) }=j 55.1 \|(0.8+38.75+j 4.02)

 

=j 55.1 \|(39.55+j 4.02)=30.8 \angle 39.6^{\circ}=23.73+j 19.63

 

\bar{Z}_{b} \text { (total) }=j 55.1 \|(0.8+0.79+j 4.02)

 

=j 55.1 \|(1.59+j 4.02)=4.02 \angle 70^{\circ}=1.37+j 3.78

 

\bar{Z}(\text { total })=(23.73+j 19.63)+(1.37+j 3.78)=25.1+j 23.41=34.3 \angle 43^{\circ}

 

\bar{I}_{m}=\frac{215}{34.3 \angle 43^{\circ}}=6.27 \angle-43^{\circ}

 

\bar{I}_{L}=I_{m}=6.27 A ; p f=\cos 43^{\circ}=0.731

 

P_{i n}=215 \times 6.27 \times 0.731=985.4 W

 

\bar{I}_{m f}=6.27 \angle-43^{\circ} \times \frac{j 55.1}{39.55+j 59.12}=4.86 \angle-9.2^{\circ}

 

\bar{I}_{m b}=6.27 \angle-43^{\circ} \times \frac{j 55.1}{1.59+j 59.12}=5.84 \angle-41.4^{\circ}

 

T=\frac{1}{157.1}\left[(4.84)^{2} \times 38.75-(5.84)^{2} \times 0.79\right]=5.6 Nm

 

P_{m}=157.1(1-0.04) \times 5.6=844.6 W

 

Rotational loss = 185 W

 

P_{\text {out }}=844.6-185=659.6 W

 

\eta=\frac{659.6}{985.5}=66.9 \%

 

T(\text { shaft })=659.6 / 157.1=4.12 Nm
10 2 1
10 2 2
10 2 3

Related Answered Questions