Question 23.7: Each transmission line of the three-wire, three-phase system...
Each transmission line of the three-wire, three-phase system in Fig. 23.26 has an impedance of 15 Ω+j 20 Ω. The system delivers a total power of 160 kW at 12,000 V to a balanced three-phase load with a lagging power factor of 0.86.
a. Determine the magnitude of the line voltage E_{A B} of the generator.
b. Find the power factor of the total load applied to the generator.
c. What is the efficiency of the system?

Learn more on how we answer questions.
\text { a. } \quad V_{\phi}( load )=\frac{V_{L}}{\sqrt{3}}=\frac{12,000 V }{1.73}=6936.42 V.
P_{T}( load )=3 V_{\phi} I_{\phi} \cos \theta.
and
I_{\phi}=\frac{P_{T}}{3 V_{\phi} \cos \theta}=\frac{160,000 W }{3(6936.42 V )(0.86)}.
= 8.94 A.
\text { Since } \theta=\cos ^{-1} 0.86=30.68^{\circ}, \text { assigning } V _{\phi} \text { an angle of } 0^{\circ} \text { or } V _{\phi}=V_{\phi} \angle 0^{\circ} \text {, a lagging power factor results in }
I _{\phi}=8.94 A \angle-30.68^{\circ}.
For each phase, the system will appear as shown in Fig. 23.27, where
E _{A N}- I _{\phi} Z _{\text {line }}- V _{\phi}=0.
or
E _{A N}= I _{\phi} Z _{\text {line }}+ V _{\phi}.
=\left(8.94 A \angle-30.68^{\circ}\right)\left(25 \Omega \angle 53.13^{\circ}\right)+6936.42 V \angle 0^{\circ}.
=223.5 V \angle 22.45^{\circ}+6936.42 V \angle 0^{\circ}.
=206.56 V +j 85.35 V +6936.42 V.
=7142.98 V + j 85.35 V.
=7143.5 V \angle 0.68^{\circ}.
Then E_{A B}=\sqrt{3} E_{\phi g}=(1.73)(7143.5 V ).
= 12,358.26 V.
\text { b. } P_{T}=P_{\text {load }}+P_{\text {lines }}.
=160 kW +3\left(I_{L}\right)^{2} R_{\text {line }}.
=160 kW +3(8.94 A )^{2} 15 \Omega.
=160,000 W +3596.55 W.
= 163,596.55 W.
and
P_{T}=\sqrt{3} V_{L} I_{L} \cos \theta_{T}.
or \cos \theta_{T}=\frac{P_{T}}{\sqrt{3} V_{L} I_{L}}=\frac{163,596.55 W }{(1.73)(12,358.26 V )(8.94 A )}.
and F_{p}= 0 . 8 5 6 <0.86 \text { of load }.
\text { c. } \eta=\frac{P_{o}}{P_{i}}=\frac{P_{o}}{P_{o}+P_{\text {losses }}}=\frac{160 kW }{160 kW +3596.55 W }=0.978.
= 97.8%.
