Question 23.3: For the Δ-Δ system shown in Fig. 23.20: a. Find the phase an...
For the Δ-Δ system shown in Fig. 23.20:
a. Find the phase angles \theta_{2} \text { and } \theta_{3} for the specified phase sequence.
b. Find the current in each phase of the load.
c. Find the magnitude of the line currents.

Learn more on how we answer questions.
a. For an ACB phase sequence,
\theta_{2}=120^{\circ} \quad \text { and } \quad \theta_{3}=-120^{\circ}.
\text { b. } V _{\phi}= E _{L} \text {. Therefore, }V _{a b}= E _{A B} \quad V _{c a}= E _{C A} \quad V _{b c}= E _{B C}.
The phase currents are
I _{a b}=\frac{ V _{a b}}{ Z _{a b}}=\frac{120 V \angle 0^{\circ}}{\frac{\left(5 \Omega \angle 0^{\circ}\right)\left(5 \Omega \angle-90^{\circ}\right)}{5 \Omega-j 5 \Omega}}=\frac{120 V \angle 0^{\circ}}{\frac{25 \Omega \angle-90^{\circ}}{7.071 \angle-45^{\circ}}}.
=\frac{120 V \angle 0^{\circ}}{3.54 \Omega \angle-45^{\circ}}=33.9 A \angle 45^{\circ}.
I _{b c}=\frac{ V _{b c}}{ Z _{b c}}=\frac{120 V \angle 120^{\circ}}{3.54 \Omega \angle-45^{\circ}}=33.9 A \angle 165^{\circ}.
I _{ ca}=\frac{ V _{ ca}}{ Z _{ ca}}=\frac{120 V \angle -120^{\circ}}{3.54 \Omega \angle-45^{\circ}}=33.9 A \angle -75^{\circ}.
\text { c. } I_{L}=\sqrt{3} I_{\phi}=(1.73)(34 A )=58.82 A . \text { Therefore, }I_{A a}=I_{B b}=I_{C c}=58.82 A.