Question 18.ss.2: You have the following information for a company you are val...

You have the following information for a company you are valuing and for a comparable company:

Comparable companyCompany you are valuingStock price=$23.45Value of debt=$3.68 millionNumber of shares outstanding=6.23 millionEst.EBITDA next year=$4.4 millionValue of debt=$18.45 millionEst.income next year=$1.5 millionEst.EBITDA next year=$17.0 millionEst.income next year=$5.3 million\begin{matrix}\bold{Comparable \ company} && \bold{Company \ you \ are \ valuing} \\ \text{Stock price}=\$23.45 && \text{Value of debt}=\$3.68 \ \text{million} \\ \text{Number of shares outstanding}=6.23 \ \text{million} && \text{Est.EBITDA next year}=\$4.4 \ \text{million} \\ \text{Value of debt}=\$18.45 \ \text{million} && \text{Est.income next year}=\$1.5 \ \text{million} \\ \text{Est.EBITDA next year}=\$17.0 \ \text{million} \\ \text{Est.income next year}=\$5.3 \ \text{million} \end{matrix}

Estimate the enterprise value of the company you are evaluating using the P/E and enterprise value/EBITDA multiples.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The P/E and enterprise value/EBITDA multiples for the comparable company are:

(PE)Comparable=(Stock priceEarnings per share)Comparable=$23.45per share$5.3 million/6.23 million shares=27.6\begin{matrix} \left(\frac{P}{E}\right) _{\text{Comparable}} & = & \left(\frac{\text{Stock price}}{\text{Earnings per share}}\right)_{\text{Comparable}} \\ \\ & = & \frac{\$23.45 \text{per share}}{\$5.3 \ \text{million}/6.23 \ \text{million shares}} \\ \\ & = & 27.6 \end {matrix}

 

(Enterprise valueEBITDA)Comparable=(VD+VEEBITDA)Comparable=$18.45 million+($23.45per share×6.23 million  shares)$17.0 million=9.68\begin{matrix} \left(\frac{\text{Enterprise value}}{EBITDA}\right)_{\text{Comparable}} & = & \left(\frac{V_D+V_E}{EBITDA}\right)_{\text{Comparable}} \\ \\ & = & \frac{\$18.45 \ \text{million}+(\$23.45 \text{per share}\times 6.23  \text{million  shares})}{\$17.0 \ \text{million}} \\ \\ & = &9.68 \end{matrix}

Using the P/E multiple, we can calculate the value of the equity as:

VE=(PE)Comparable×Net incomeCompany being valued=27.6×$1.5 million=$41.4 million\begin{matrix} V_E &=& \left(\frac{P}{E}\right)_{\text{Comparable}}\times \text{Net income}_{\text{Company being valued}} \\ \\ &=&27.6\times \$1.5  \text{million} \\ \\ &=&\$41.4 \text{ million} \end{matrix}

which suggests an enterprise value of:

VF=VE+VD=$41.4million+$3.68 million=$45.08 millionV_F=V_E+V_D=\$41.4 \text{million}+\$3.68 \text{ million}=\$45.08 \text{ million}

Using the enterprise/EBITDA multiple, we obtain:

VF=(Enterprise valueEBITDA)Comparable×EBITDACompany being valued=9.68×$4.4million=$42.59 million\begin{matrix} V_F &=& \left(\frac{\text{Enterprise value}}{EBITDA}\right)_{\text{Comparable}} \times EBITDA_{\text{Company being valued}} \\ \\ &=&9.68\times \$4.4 \text{million} \\ \\ &=&\$42.59 \text{ million} \end{matrix}

Related Answered Questions