Question 24.9: Sketch vC for the step input shown in Fig. 24.22. Assume tha...

Sketch v_{C} for the step input shown in Fig. 24.22. Assume that the -4 mV has been present for a period of time in excess of five time constants of the network. Then determine when v_{C} = 0 V if thestep changes levels at t = 0 s.

24.22
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

V_{i}=-4 mV \quad V_{f}=10 mV.

\tau=R C=(1 k \Omega)(0.01 \mu F )=10 \mu s.

By Eq. (24.6),

v_{C}=V_{f}+\left(V_{i}-V_{f}\right) e^{-t / R C}       (24.6).

v_{C}=V_{f}+\left(V_{i}-V_{f}\right) e^{-t / R C}.

=10 mV +(-4 mV -10 mV ) e^{-t / 10 \mu s }.

and    v_{C}=10 mV -14 mV e^{-t / 10 \mu s }.

The waveform appears in Fig. 24.23

\text { Substituting } v_{C}=0 V \text { into the above equation yields }

v_{C}=0 V =10 mV -14 mV e^{-t / 10 \mu s }.

and    \frac{10 mV }{14 mV }=e^{-t / 10 \mu s }.

or    0.714=e^{- t / 10 \mu s }.

but    \log _{e} 0.714=\log _{e}\left(e^{-t / 10 \mu s }\right)=\frac{-t}{10 \mu s }.

\text { and } \quad t=-(10 \mu s ) \log _{e} 0.714=-(10 \mu s )(-0.377)=3.37 \mu s.

as indicated in Fig. 24.23.

24.33

Related Answered Questions

Question: 24.11

Verified Answer:

T=\frac{1}{f}=\frac{1}{10 kHz }=0.1 ms[/lat...
Question: 24.6

Verified Answer:

By the method in Section 13.7, G=\frac{\tex...
Question: 24.5

Verified Answer:

T=(2.6 \text { div. })(10 \mu s / \text { d...