Question 16.2: Determine the reactions and draw the shear and bending momen...

Determine the reactions and draw the shear and bending moment diagrams for the three-span continuous beam shown in Fig. 16.6(a) by the slope-deflection method.

16.6a
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Degrees of Freedom θ_B and θ_C

Fixed-End Moments

FEM_{AB} = \frac{27(6)^2}{30} = 32.4 kN-m\circlearrowleft       or      + 32.4 kN-m

 

FEM_{BA} = \frac{27(6)^2}{20} = 48.6 kN-m\circlearrowright       or      – 48.6 kN-m

 

FEM_{BC} = \frac{27(6)^2}{12} = 81 kN-m\circlearrowleft       or      + 81 kN-m

 

FEM_{CB} = 81 kN-m \circlearrowright           or        -81 kN-m

 

FEM_{CD} = \frac{27(6)^2}{20} = 48.6 kN-m\circlearrowleft       or      + 48.6 kN-m

 

FEM_{DC} = \frac{27(6)^2}{30} = 32.4 kN-m\circlearrowright       or      – 32.4 kN-m

Slope-Deflection Equations Using Eq. (16.9) for members AB, BC, and CD, we write

M_{nf} = \frac{2EI}{L}(2θ_n + θ_f – 3ψ) + FEM_{nf}               (16.9)

M_{AB} = \frac{2EI}{6}(θ_B) + 32.4 = 0.33EIθ_B + 32.4                       (1)

M_{BA} =\frac{2EI}{6}(2θ_B) – 48.6 = 0.67EIθ_B – 48.6                       (2)

M_{BA} =\frac{2EI}{6}(2θ_B + θ_C) + 81 = 0.67EIθ_B + 0.33EIθ_C + 81                       (3)

M_{CB} =\frac{2EI}{6}(θ_B + 2θ_C) – 81 = 0.33EIθ_B + 0.67EIθ_C – 81                    (4)

M_{CD} =\frac{2EI}{6}(2θ_C) + 48.6 = 0.67EIθ_C + 48.6                         (5)

M_{DC} =\frac{2EI}{6}(θ_C) – 32.4 = 0.33EIθ_C – 32.4                   (6)

Equilibrium Equations See Fig. 16.6(b).

M_{BA} + M_{BC} = 0                      (7)

M_{CB} + M_{CD} = 0                       (8)

Joint Rotations By substituting the slope-deflection equations (Eqs. (1) through (6)) into the equilibrium equations (Eqs. (7) and (8)), we obtain

1.34EIθ_B + 0.33EIθ_C = -32.4                              (9)

0.33EIθ_B + 1.34EIθ_C = 32.4                                (10)

By solving Eqs. (9) and (10) simultaneously, we determine the values of EIθ_B and EIθ_C to be

EIθ_B = -32.08 kN-m^2

 

EIθ_C = 32.08 kN-m^2

Member End Moments To compute the member end moments, we substitute the numerical values of EIθ_B and EIθ_C back into the slope-deflection equations (Eqs. (1) through (6)) to obtain

M_{AB} = 0.33(-32.08) + 32.4 = 21.6 kN-m\circlearrowleft

 

M_{BA} = 0.67(-32.08) – 48.6 = -70.2 kN-m           or          70.2 kN-m \circlearrowright

 

M_{BC} = 0.67(-32.08) + 0.33(32.08) + 81 = 70.2 kN-m \circlearrowleft

 

M_{CB} = 0.33(-32.08) + 0.67(32.08) – 81

 

= -70.2 kN-m         or          70.2 kN-m \circlearrowright

 

M_{CD} = 0.67(32.08) + 48.6 = 70.2 kN-m\circlearrowleft

 

M_{DC} = 0.33(32.08) – 32.4 = -21.6 kN-m         or         21.6 kN-m \circlearrowright

Note that the numerical values of M_{BA}, M_{BC}, M_{CB}, and M_{CD} do satisfy the equilibrium equations (Eqs. (7) and (8)).

Member End Shears and Support Reactions See Fig. 16.6(c) and (d).

Equilibrium Check The equilibrium equations check.

Shear and Bending Moment Diagrams See Fig. 16.6(e) and (f ).

16.6b
16.6d
16.6f

Related Answered Questions

Question: 16.3

Verified Answer:

This beam was previously analyzed in Example 13.6 ...
Question: 16.4

Verified Answer:

Since the moment and shear at end C of the cantile...
Question: 16.8

Verified Answer:

Degrees of Freedom The joints C, D, and E of the f...
Question: 16.10

Verified Answer:

Degrees of Freedom The degrees of freedom are [lat...
Question: 16.11

Verified Answer:

Degrees of Freedom Degrees of freedom are θ...
Question: 16.7

Verified Answer:

Because the beam and the loading are symmetric wit...