Question D.6: Solve for x, y, and z: 1x + 0y - 2z=-1, 0x + 3y + 1z=+2, 1x ...
Solve for x, y, and z:
\begin{aligned}1 x+0 y-2 z=-1 \\0 x+3 y+1 z=+2 \\1 x+2 y+3 z=0 \\\hline\end{aligned}The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Learn more on how we answer questions.
=\frac{[(-1)(3)(3)+(0)(1)(0)+(-2)(2)(2)]-[(0)(3)(-2)+(2)(1)(-1)+(3)(2)(0)]}{[(1)(3)(3)+(0)(1)(1)+(-2)(0)(2)]-[(1)(3)(-2)+(2)(1)(1)+(3)(0)(0)]}.
=\frac{(-9+0-8)-(0-2+0)}{(9+0+0)-(-6+2+0)}.
=\frac{-17+2}{9+4}=-\frac{15}{13}.
=\frac{[(1)(2)(3)+(-1)(1)(1)+(-2)(0)(0)]-[(1)(2)(-2)+(0)(1)(1)+(3)(0)(-1)]}{13}.
=\frac{(6-1+0)-(-4+0+0)}{13}.
=\frac{5+4}{13}=\frac{9}{13}.
=\frac{[(1)(3)(0)+(0)(2)(1)+(-1)(0)(2)]-[(1)(3)(-1)+(2)(2)(1)+(0)(0)(0)]}{13}.
=\frac{(0+0+0)-(-3+4+0)}{13}.
=\frac{0-1}{13}=-\frac{1}{13}.
\text { or from } 0 x+3 y+1 z=+2.
z=2-3 y=2-3\left(\frac{9}{13}\right)=\frac{26}{13}-\frac{27}{13}=-\frac{1}{13}.
Check:
\left. \begin{aligned}&1 x+0 y-2 z=-1 \\&0 x+3 y+1 z=+2 \\&1 x+2 y+3 z=0\end{aligned} \right\} \left. \begin{aligned}&-\frac{15}{13}+0+\frac{2}{13}=-1 \\&0+\frac{27}{13}+\frac{-1}{13}=+2 \\&-\frac{15}{13}+\frac{18}{13}+\frac{-3}{13}=0\end{aligned} \right\} \begin{aligned}&-\frac{13}{13}=-1 \checkmark \\&\frac{26}{13}=+2 \checkmark \\&-\frac{18}{13}+\frac{18}{13}=0 \checkmark\end{aligned}Related Answered Questions
Question: D.4
Verified Answer:
In this case, the equations must first be placed i...
Question: D.3
Verified Answer:
In this example, note the effect of the minus sign...
Question: D.7
Verified Answer:
\text { a. } \quad D=\left|\begin{array}{ll...
Question: D.5
Verified Answer:
[(1)(1)(2)+(2)(0)(0)+(3)(-2)(4)][la...
Question: D.2
Verified Answer:
x=\frac{\left|\begin{array}{ll}3 & 1 \\...
Question: D.1
Verified Answer:
\text { a. }\left|\begin{array}{ll}2 & ...