Question 3.1: a. Calculate (∂f/∂x)y, (∂f/∂y)x, (∂²f/∂x²)y, (∂²f/∂y²)x, (∂(...

a. Calculate

\left( \frac{\partial f}{\partial x} \right)_{y},\left( \frac{\partial f}{\partial y} \right)_{x},\left( \frac{\partial^{2} f}{\partial x^{2}} \right)_{y},\left( \frac{\partial^{2} f}{\partial y^{2}} \right)_{x},\left( \frac{\partial\left( \frac{\partial f}{\partial x} \right)_{y}}{\partial y} \right)_{x}, and \left(\frac{\partial\left( \frac{\partial f}{\partial y} \right)_{x}}{\partial x} \right)_{y}

 

for the function f\left( x,y \right)=ye^{x}+x y+x\ln y.

b. Determine if f\left( x,y \right)  is a state function of the variables x  and  y.

c. If f\left( x,y \right) is a state function of the variables x and y , what is the total differential df?

 

 

 

 

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. \left( \frac{\partial f}{\partial x} \right)_{y}=ye^{x} + y + \ln y,                                      \left( \frac{\partial f}{\partial y} \right)_{x}=e^{x} +x+\frac{x}{y}

 

\left( \frac{\partial^{2}f }{\partial x^{2}} \right)_{y}= ye^{x},                              \left( \frac{\partial^{2}f }{\partial y^{2}} \right)_{x}=-\frac{x}{y^{2}}

 

\left( \frac{\partial \left( \frac{\partial f}{\partial x} \right)_{y}}{\partial y} \right)_x=e^{x} + 1+ \frac{1}{y},                                           \left( \frac{\partial \left( \frac{\partial f}{\partial y} \right)_{x}}{\partial x} \right)_{y} = e^{x} + 1+\frac{1}{y}

b. Because we have shown that

\left( \frac{\partial \left( \frac{\partial f }{\partial x} \right)_{y}}{\partial y} \right)_{x} = \left( \frac{\partial \left( \frac{\partial f}{\partial y} \right)}{\partial x} \right)_{y}

f\left( x,y \right) is a state function of the variables x and y. Generalizing this result, any well-behaved function that can be expressed in analytical form is a state function.
c. The total differential is given by

df = \left( \frac{\partial f}{\partial x} \right)_{y} dx + \left( \frac{\partial f}{\partial y} \right)_{x} dy

 

=\left( ye^{x} + y +\ln y \right) dx+ \left( e^{x} +x+\frac{x}{y}\right)dy

Related Answered Questions

Question: 3.11

Verified Answer:

\mu_{J-T}=-\frac{1}{C_{P}}\left( \frac{\par...
Question: 3.8

Verified Answer:

\left(\partial P/\partial T\right)_{V}= \le...
Question: 3.3

Verified Answer:

\left( \frac{\partial U}{\partial V} \right...