Question 9.9: A fighter aircraft has the following characteristics: mTO = ...

A fighter aircraft has the following characteristics:

m_{TO} = 25,000 kg,   S = 40 m²,   T_{\max} = 100 kN,   C_{Do} = 0.014;   b = 9 m,   C_{L\max} = 1.3

Analyze the performance of the aircraft for the tightest turn at two flight conditions for sea level:
1. Theoretical solutions (i.e., application of the maximum engine thrust).
2. Turn with a speed that is 90% of the corner speed but having the maximum lift coefficient (i.e., point D in Figure 9.10).

9.10
9.15
9.16
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We first need to find two parameters:

AR=\frac{b^2}{S}=\frac{9^2}{40}=2.025 \quad \quad \quad \quad (3.9) \\ \space \\ K=\frac{1}{\pi eAR}=\frac{1}{3.14\times 0.7\times 2.025}=0.225 \quad \quad \quad \quad (3.8)

1. Application of the maximum engine thrust

V_{tt}=\sqrt{\frac{4KW^2}{\rho ST_{\max}}}=\sqrt{\frac{4\times 2.025\times (25,000\times 9.81)^2}{1.225\times 40\times 100,000}}=10.4.97 \space m/s=204\space knot \quad \quad \quad \quad (9.111) \\ \space \\  V^{\ast}=\sqrt{\frac{2T_{\max}}{\rho_o S[KC_{L\max}^2+C_{D_{o}}]}}=\sqrt{\frac{2\times 100,000}{1.225\times 40[0.0.225\times 1.3^2+0.014]}}=101.8\space m/s=198\space knot \quad \quad \quad \quad (9.90)

V_{tt} is slightly greater than the corner speed (V_{tt} ≥ V^{\ast}). So, we use the equations in the fourth column of Table 9.5.

n_{tt}=\sqrt{2-\frac{4KC_{Do}}{(T_{\max}/W)^2}}=\sqrt{2-\frac{4\times 0.225\times 0.014}{(100,000/25,000\times 9.81)^2}}=1.387 \quad \quad \quad \quad (9.113) \\ \space \\  \phi_{tt}=\cos^{-1}\Big(\frac{1}{n_{tt}}\Big)=\cos^{-1}\Big(\frac{1}{1.387}\Big)=43.87^{\circ} \quad \quad \quad \quad (9.116) \\ \space \\ R_{tt}=R_{\min}=\frac{V_{tt}^2}{g\sqrt{n_{tt}^2-1}}=\frac{104.97^2}{9.81\sqrt{1.387^2-1}}=1168.6 \space m\quad \quad \quad \quad (9.121)

Equation 9.119 yields the same value for the minimum radius.
2. Turn with a speed that is 90% of the corner speed but having the maximum lift coefficient. The new speed would be

V=0.9 V*=0.9× 101.85=91.66 m/s

When V < V*, but having the maximum lift coefficient, the load factor is

n=\frac{\rho V^2SC_{L_{\max}}}{2W}=\frac{1.225\times 91.66^2\times 40\times 1.3}{2\times 25,000\times 9.81}=1.091 \quad \quad \quad \quad (9.45)

The bank angle would be

\phi=\cos^{-1}\Big(\frac{1}{n}\Big)=\cos^{-1}\Big(\frac{1}{1.091}\Big)=23.6^{\circ} \quad \quad \quad \quad (9.12)

The turn radius would be

R=\frac{V^2}{g\sqrt{n^2-1}}=\frac{91.66^2}{9.81\sqrt{1.091^2-1}}=1958\space m \quad \quad \quad \quad (9.24)

This turn radius is 40.3% longer than the minimum turn radius.
A reduction in the airspeed requires a reduction in the engine thrust.

T=D=\frac{1}{2}\rho V^2S(C_{Do}+KC_{L\max}^2)=\frac{1}{2}\times 1.225\times 91.66^2\times 40\times (0.014+2.025\times 1.3^2) \quad \quad \quad \quad (9.38) \\ \space \\ T=81,000 \space N=81 \space kN

This thrust is 81% of the maximum engine thrust.


(3.9):      AR=\frac{b}{C}=\frac{bb}{Cb}=\frac{b^2}{S}

(9.111):      V_{tt}=V_{R_{\min}}=\sqrt{\frac{4KW^2}{\rho ST_{\max}}}

(9.90):        V^{\ast}=\Big[\frac{2P_{\max}\eta_P}{\rho S(C_{D_o}+KC_{L_{\max}}^2)}\Big]^{\frac{1}{3}}

(9.121):       \omega_{tt}=\frac{g\tan(\phi_{tt})}{V_{tt}}=\frac{g\sqrt{n_{tt}^2-1}}{V_{tt}}

(9.119):       R_{tt}=R_{\min}=\frac{4Km^2}{g\rho ST_{\max}}

(9.45):        n_{\max}=\frac{\rho V^2SC_{L_{\max}}}{2W}    (when V < V*)

(9.12):         n=\frac{1}{\cos\phi}

(9.38):         D=\frac{1}{2}\rho V^2SC_D=\frac{1}{2}\rho V^2S(C_{Do}+KC_{L}^2)

 

Table 9.5 Summary of equations for the tightest turn parameters

No. Tightest turn parameter Symbol If V_{tt}\geq V^{\ast} If V_{tt}\prec  V^{\ast}
1. Airspeed corresponding to minimum turn radius V_{tt} 9.109 9.110
2. Load factor corresponding to minimum turn radius n_{tt} 9.111 9.112
3. Turn rate corresponding to minimum turn radius \omega_{tt} 9.117 9.117
4. Minimum turn radius R_{tt} 9.114 or 9.115 9.114 or 9.116
5. Bank angle corresponding to minimum turn radius \phi_{tt} 9.113 9.113
9.17

Related Answered Questions