Question 9.11: Consider a small remote-controlled (RC) aircraft with the fo...

Consider a small remote-controlled (RC) aircraft with the following characteristics:

m = 700 g,   S = 0.2 m²,   b = 1 m;   e = 0.8;   η_P = 0.7,   C_{Do} = 0.03,   C_{L\max} = 1.2

The airplane is employing a prop-driven electric motor where three cells of 2100 mAh, 12 V Li-Po (lithium polymer) batteries provide electric energy for the motor. Evaluate the tightest turn performance of this aircraft at the sea level.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We first need to find two parameters, namely, AR and K:

AR=\frac{b^2}{S}=\frac{1^2}{0.2}=5 \quad \quad \quad \quad (3.9)\\ \space \\ K=\frac{1}{\pi eAR}=\frac{1}{3.14\times 0.8\times 5}=0.08 \quad \quad \quad \quad (3.8)

Based on the description of the battery, a maximum current of 2.1 A (i.e., 2100 milli-amps) at 12 V is provided for one hour (i.e., 3600 s). Thus, the engine power from these batteries is

P_{\max}=IV=2.1 \times 3\times 12=75.6 \space W \quad \quad \quad \quad (4.35)

We need to compare the corner speed and the airspeed corresponding to the tightest turn:

V_{ft}=\frac{8KW^2}{3\rho P\eta_PS}=\frac{8\times 0.08\times (0.7\times 9.81)^2}{3\times 1.225\times 75.6\times 0.7\times 0.2}=0.77\space m/s=1.5 \space knot \quad \quad \quad \quad (9.139) \\ \space \\ V^{\ast}=\Big[\frac{2P_{\max}\eta_P}{\rho S(C_{D_o}+KC^2_{L_{\max}})}\Big]^{\frac{1}{3}}=\Big[\frac{2\times 75.6\times 0.7}{1.225\times 0.2\times (0.03+0.08\times (1.2)^2)}\Big]^{\frac{1}{3}} \quad \quad \quad \quad (9.140) \\ \space \\ \Rightarrow V^{\ast}=14.4\space m/s=28\space knot

Since V_{tt} < V^{\ast}, the theoretical value for the tightest is not practical. From Equation 9.140, we consider V_{tt} = V^{\ast}= 14.4  m/s. According to Table 9.7, the equations in the last column are used. The load factor is

n_{tt}=n_{\max_C}=\frac{\rho (V^{\ast})^2SC_{L_{\max}}}{2W}=\frac{1.225\times 14.4^2\times 0.2\times 1.2}{2\times 0.7\times 9.81}=4.44\quad \quad \quad \quad (9.143)

The turn radius for the tightest turn (R_{tt}) is

R_{tt}=R_{\min}=\frac{V_{tt}^2}{g\sqrt{n_{tt}^2-1}}=\frac{14.4^2}{9.81\sqrt{4.44^2-1}}=4.89 \space m\quad \quad \quad \quad (9.146)


(3.9):       AR=\frac{b}{C}=\frac{bb}{Cb}=\frac{b^2}{S}

(4.35):     P =IV

(9.139):   V_{tt}=\frac{8KW^2}{3\rho P\eta_PS}

(9.140):   V_{tt}=V^{\ast}=\Big[\frac{2P_{\max}\eta_P}{\rho S(C_{D_o}+KC^2_{L_{\max}})}\Big]^{\frac{1}{3}}

 

Table 9.7 Summary of equations for the tightest turn parameters

No. Tightest turn parameter Symbol If V_{tt}\geq V^{\ast} If V_{tt}\prec  V^{\ast}
1. Airspeed corresponding to minimum turn radius V_{tt} 9.135 9.136
2. Load factor corresponding to minimum turn radius n_{tt} 9.137 or 9.138 9.139
3. Turn rate corresponding to minimum turn radius \omega_{tt} 9.146 or 9.145 9.145
4. Minimum turn radius R_{tt} 9.143 9.142 or 9.144
5. Bank angle corresponding to minimum turn radius \phi_{tt} 9.141 9.140

Related Answered Questions