Question 14.4: A 17-tooth 20° pressure angle spur pinion rotates at 1800 re...

A 17-tooth 20° pressure angle spur pinion rotates at 1800 rev/min and transmits 4 hp to a 52-tooth disk gear. The diametral pitch is 10 teeth/in, the face width 1.5 in, and the quality standard is No. 6. The gears are straddle-mounted with bearings immediately adjacent. The pinion is a grade 1 steel with a hardness of 240 Brinell tooth surface and through-hardened core. The gear is steel, through-hardened also, grade 1 material, with a Brinell hardness of 200, tooth surface and core. Poisson’s ratio is 0.30, J_{P}=0.30, J_{G}=0.40, and Young’s modulus is 30\left(10^{6}\right) psi. The loading is smooth because of motor and load. Assume a pinion life of 10^{8} cycles and a reliability of 0.90, and use Y_{N}=1.3558 N^{-0.0178}, Z_{N}=1.4488 N^{-0.023}. The tooth profile is uncrowned. This is a commercial enclosed gear unit.

(a) Find the factor of safety of the gears in bending.

(b) Find the factor of safety of the gears in wear.

(c) By examining the factors of safety, identify the threat to each gear and to the mesh.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

There will be many terms to obtain so use Figs. 14–17 and 14–18 as guides to what is needed.

d_{P}=N_{P} / P_{d}=17 / 10=1.7 \text { in } \quad d_{G}=52 / 10=5.2 \text { in }

 

V=\frac{\pi d_{P} n_{P}}{12}=\frac{\pi(1.7) 1800}{12}=801.1 ft / min

 

W^{t}=\frac{33000 H}{V}=\frac{33000(4)}{801.1}=164.8 lbf

 

Assuming uniform loading, K_{o}=1. To evaluate K_{v}, from Eq. (14–28) with a quality number O_{n}=6,

 

\begin{array}{l}A=50+56(1-B) \\B=0.25\left(12-Q_{v}\right)^{2 / 3}\end{array} (14–28)

 

\begin{array}{l}B=0.25(12-6)^{2 / 3}=0.8255 \\A=50+56(1-0.8255)=59.77\end{array}

 

Then from Eq. (14–27) the dynamic factor is

 

K_{v}=\left\{\begin{array}{ll}\left(\frac{A+\sqrt{V}}{A}\right)^{B} & V \text { in } ft / min \\\left(\frac{A+\sqrt{200 V}}{A}\right)^{B} & V \text { in } m / s\end{array}\right. (14–27)

 

K_{v}=\left(\frac{59.77+\sqrt{801.1}}{59.77}\right)^{0.8255}=1.377

 

To determine the size factor, Ks , the Lewis form factor is needed. From Table 14–2, with N_{P}=17 \text { teeth } teeth, Y_{P}=0.303. Interpolation for the gear with N_{G}=52 teeth yields Y_{G}=0.412. Thus from Eq. (a) of Sec. 14–10, with F = 1.5 in,

 

Table 14–2 Values of the Lewis Form Factor Y (TheseValues Are for a Normal Pressure Angle of 20°, Full-Depth Teeth, and a Diametral Pitch of Unity in the Plane of Rotation)
Number of Teeth Y Number of Teeth Y
12 0.245 28 0.353
13 0.261 30 0.359
14 0.277 34 0.371
15 0.29 38 0.384
16 0.296 43 0.397
17 0.303 50 0.409
18 0.309 60 0.422
19 0.314 75 0.435
20 0.322 100 0.447
21 0.328 150 0.46
22 0.331 300 0.472
24 0.337 400 0.48
26 0.346 Rack 0.485

 

\sigma=\frac{M}{I / c}=\frac{6 W^{t} l}{F t^{2}} (a)

 

\left(K_{s}\right)_{P}=1.192\left(\frac{1.5 \sqrt{0.303}}{10}\right)^{0.0535}=1.043

 

\left(K_{s}\right)_{G}=1.192\left(\frac{1.5 \sqrt{0.412}}{10}\right)^{0.0535}=1.052

 

The load distribution factor K_{m} is determined from Eq. (14–30), where five terms are needed. They are, where F = 1.5 in when needed:

 

K_{m}=C_{m f}=1+C_{m c}\left(C_{p f} C_{p m}+C_{m a} C_{e}\right) (14–30)

 

Uncrowned, Eq. (14–30): C_{m c}=1,

 

K_{m}=C_{m f}=1+C_{m c}\left(C_{p f} C_{p m}+C_{m a} C_{e}\right) (14–30)

 

Eq. (14–32): C_{p f}=1.5 /[10(1.7)]-0.0375+0.0125(1.5)=0.0695

 

C_{p f}=\left\{\begin{array}{ll}\frac{F}{10 d}-0.025 & F \leq 1 \text { in } \\\frac{F}{10 d}-0.0375+0.0125 F & 1<F \leq 17 \text { in } \\\frac{F}{10 d}-0.1109+0.0207 F-0.000228 F^{2} & 17<F \leq 40 \text { in }\end{array}\right. (14–32)

 

Bearings immediately adjacent, Eq. (14–33): C_{p m}=1

 

C_{p m}=\left\{\begin{array}{ll}1 & \text { for straddle-mounted pinion with } S_{1} / S<0.175 \\1.1 & \text { for straddle-mounted pinion with } S_{1} / S \geq 0.175\end{array}\right. (14–33)

 

Commercial enclosed gear units (Fig. 14–11): C_{m a}=0.15

Eq. (14–35): C_{e}=1

 

C_{e}=\left\{\begin{array}{cl}0.8 & \text { for gearing adjusted at assembly, or compatibility } \\1 & \text { is improved by lapping, or both }\end{array}\right. (14–35)

 

Thus,

 

K_{m}=1+C_{m c}\left(C_{p f} C_{p m}+C_{m a} C_{e}\right)=1+(1)[0.0695(1)+0.15(1)]=1.22

 

Assuming constant thickness gears, the rim-thickness factor K_{B}=1. The speed ratio is m_{G}=N_{G} / N_{P}=52 / 17=3.059. The load cycle factors given in the problem statement, with N \text { (pinion) }=10^{8} cycles and N(\text { gear })=10^{8} / m_{G}=10^{8} / 3.059 cycles, are

 

\left(Y_{N}\right)_{P}=1.3558\left(10^{8}\right)^{-0.0178}=0.977

 

\left(Y_{N}\right)_{G}=1.3558\left(10^{8} / 3.059\right)^{-0.0178}=0.996

 

From Table 14.10, with a reliability of 0.9, K_{R}=0.85. From Fig. 14–18, the temperature and surface condition factors are K_{T}=1 \text { and } C_{f}=1. From Eq. (14–23), with m_{N}=1 for spur gears,

 

Table 14–10 Reliability Factors K_{R}\left(Y_{Z}\right) Source: ANSI/AGMA 2001-D04.
Reliability K_{R}\left(Y_{Z}\right)
0.9999 1.50
0.999 1.25
0.99 1.00
0.90 0.85
0.50 0.70

 

I=\left\{\begin{array}{ll}\frac{\cos \phi_{t} \sin \phi_{t}}{2 m_{N}} \frac{m_{G}}{m_{G}+1} & \text { external gears } \\\frac{\cos \phi_{t} \sin \phi_{t}}{2 m_{N}} \frac{m_{G}}{m_{G}-1} & \text { internal gears }\end{array}\right. (14–23)

 

I=\frac{\cos 20^{\circ} \sin 20^{\circ}}{2} \frac{3.059}{3.059+1}=0.121

 

From Table 14–8, C_{p}=2300 \sqrt{ ps }.

 

Table 14–8 Elastic Coefficient C_{p}\left(Z_{E}\right), \sqrt{ psi }(\sqrt{ MPa }) Source: AGMA 218.01
Gear Material and Modulus of Elasticity E_{G}, lbf / in ^{2}( MPa )^{*}
Pinion Material Pinion Modulus of \begin{array}{l}\text { Elasticity Ep }\\\text { psi (MPa) * }\end{array} Steel \begin{array}{l}30 \times 10^{6} \\\left(2 \times 10^{5}\right)\end{array} Malleable Iron \begin{array}{c}25 \times 10^{6} \\\left(1.7 \times 10^{5}\right)\end{array} Nodular Iron \begin{array}{c}24 \times 10^{6} \\\left(1.7 \times 10^{5}\right)\end{array} Cast Iron \begin{array}{r}22 \times 10^{6} \\\left(1.5 \times 10^{5}\right)\end{array} Aluminum Bronze \begin{array}{r}17.5 \times 10^{6} \\\left(1.2 \times 10^{5}\right)\end{array} Tin Bronze \begin{array}{c}16 \times 10^{6} \\\left(1.1 \times 10^{5}\right)\end{array}
Steel 30 \times 10^{6} 2300 2180 2160 2100 1950 1900
\left(2 \times 10^{5}\right) (191) (181) (179) (174) (162) (158)
Malleable iron 25 \times 10^{6} 2180 2090 2070 2020 1900 1850
\left(1.7 \times 10^{5}\right) (181) (174) (172) (168) (158) (154)
Nodular iron 24 \times 10^{6} 2160 2070 2050 2000 1880 1830
\left(1.7 \times 10^{5}\right) (179) (172) (170) (166) (156) (152)
Cast iron 22 \times 10^{6} 2100 2020 2000 1960 1850 1800
\left(1.5 \times 10^{5}\right) (174) (168) (166) (163) (154) (149)
Aluminum bronze 17.5 \times 10^{6} 1950 1900 1880 1850 1750 1700
\left(1.2 \times 10^{5}\right) (162) (158) (156) (154) (145) (141)
Tin bronze 16 \times 10^{6} 1900 1850 1830 1800 1700 1650
\left(1.1 \times 10^{5}\right) (158) (154) (152) (149) (141) (137)

 

Next, we need the terms for the gear endurance strength equations. From Table 14–3, for grade 1 steel with H_{B P}=240 \text { and } H_{B G}=200, we use Fig. 14–2, which gives

 

Table 14–3 Repeatedly Applied Bending Strength S_{t} \text { at } 10^{7} Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04.
Material Designation Heat Treatment Minimum Surface \text { Hardness } 1 Allowable Bending Stress Number S _{ t ,}^{2} psi
Grade 1v Grade 2 Grade 3
\text { Steel }^{3} Through-hardened See Fig. 14–2 See Fig. 14–2 See Fig. 14–2
\text { Flame }^{4} or induction See Table 8* 45 000 55 000
\text { hardened }{ }^{4} with type
\text { A pattern }{ }^{5}
\text { Flame }^{4} or induction See Table 8* 22 000 22 000
\text { hardened }{ }^{4} with type
\text { B pattern }{ }^{5}
Carburized and hardened See Table 9* 55 000 \begin{array}{l}65000 \text { or } \\70000^{6}\end{array} 75 000
\text { Nitrided }^{4,7} (through- hardened steels) 83.5 HR15N See Fig. 14–3 See Fig. 14–3
Nitralloy 135M, Nitralloy N, and 2.5% chrome (no aluminum) \text { Nitrided }^{4,7} 87.5 HR15N See Fig. 14–4 See Fig. 14–4 See Fig. 14–4

 

Notes: See ANSI/AGMA 2001-D04 for references cited in notes 1–7.

{ }^{1} \text { Hardness } to be equivalent to that at the root diameter in the center of the tooth space and face width.

{ }^{2} \text { See } tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.

{ }^{3} \text { The } steel selected must be compatible with the heat treatment process selected and hardness required.

{ }^{3} \text { The } allowable stress numbers indicated may be used with the case depths prescribed in 16.1.

{ }^{5} See figure 12 for type A and type B hardness patterns.

{ }^{6} \text { If } bainite and microcracks are limited to grade 3 levels, 70 000 psi may be used.

{ }^{3} \text { The } overload capacity of nitrided gears is low. Since the shape of the effective S-N curve is flat, the sensitivity to shock should be investigated before proceeding with the design. [7]

*Tables 8 and 9 of ANSI/AGMA 2001-D04 are comprehensive tabulations of the major metallurgical factors affecting S_{t} \text { and } S_{c} of flame-hardened and induction-hardened (Table 8) and carburized and hardened (Table  9) steel gears.4

Similarly, from Table 14–6, we use Fig. 14–5, which gives

 

Table 14–6 Repeatedly Applied Contact Strength S_{c} \text { at } 10^{7} Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04.
Material Designation Heat Treatment  Minimum Surface \text { Hardness } 1 Allowable Contact Stress \text { Number, }^{2}{ }^{\prime} S_{c}, \text { psi }
Grade 1 Grade 2 Grade 3
\text { Steel }^{3} Through \text { hardened }{ }^{4} See Fig. 14–5 See Fig. 14–5 See Fig. 14–5
\text { Flame }^{5} or induction  50 HRC 170 000 190 000
\text { hardened }^{5} 54 HRC 175 000 195 000
Carburized and \text { hardened }^{5} \text { See Table } 9^{*} 180 000 225 000 275 000
\text { Nitrided }^{5} (through 83.5 HR15N 150 000 163 000 175 000
hardened steels) 84.5 HR15N 155 000 168 000 180 000
2.5% chrome (no aluminum) \text { Nitrided }^{5} 87.5 HR15N 155 000 172 000 189 000
Nitralloy 135M \text { Nitrided }^{5} 90.0 HR15N 170 000 183 000 195 000
Nitralloy N \text { Nitrided }^{5} 90.0 HR15N 172 000 188 000 205 000
2.5% chrome (no aluminum) \text { Nitrided }^{5} 90.0 HR15N 176 000 196 000 216 000

 

Notes: See ANSI/AGMA 2001-D04 for references cited in notes 1–5.

{ }^{1} \text { Hardness } to be equivalent to that at the start of active profile in the center of the face width.

{ }^{2} \text { See } Tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.

{ }^{3} \text { The } steel selected must be compatible with the heat treatment process selected and hardness required.

{ }^{4} \text { These } materials must be annealed or normalized as a minimum.

{ }^{5} \text { The } allowable stress numbers indicated may be used with the case depths prescribed in 16.1.

*Table 9 of ANSI/AGMA 2001-D04 is a comprehensive tabulation of the major metallurgical factors affecting S_{t} \text { and } S_{c} of carburized and hardened steel gears.

 

\left(S_{c}\right)_{P}=322(240)+29100=106400 psi

 

\left(S_{c}\right)_{G}=322(200)+29100=93500 psi

 

From Fig. 14–15,

 

\left(Z_{N}\right)_{P}=1.4488\left(10^{8}\right)^{-0.023}=0.948

 

\left(Z_{N}\right)_{G}=1.4488\left(10^{8} / 3.059\right)^{-0.023}=0.973

 

For the hardness ratio factor C_{H}, the hardness ratio is H_{B P} / H_{B G}=240 / 200=1.2. Then, from Sec. 14–12,

 

\begin{aligned}A^{\prime} &=8.98\left(10^{-3}\right)\left(H_{B P} / H_{B G}\right)-8.29\left(10^{-3}\right) \\&=8.98\left(10^{-3}\right)(1.2)-8.29\left(10^{-3}\right)=0.00249\end{aligned}

 

Thus, from Eq. (14–36),

 

C_{H}=1.0+A^{\prime}\left(m_{G}-1.0\right) (14–36)

 

C_{H}=1+0.00249(3.059-1)=1.005

 

(a) Pinion tooth bending. Substituting the appropriate terms for the pinion into Eq. (14–15) gives

 

\sigma=\left\{\begin{array}{ll}W^{t} K_{o} K_{v} K_{s} \frac{P_{d}}{F} \frac{K_{m} K_{B}}{J} & \text { (U.S. customary units) } \\W^{t} K_{o} K_{v} K_{s} \frac{1}{b m_{t}} \frac{K_{H} K_{B}}{Y_{J}} & \text { (SI units) }\end{array}\right. (14–15)

 

\begin{aligned}(\sigma)_{P} &=\left(W^{t} K_{o} K_{v} K_{s} \frac{P_{d}}{F} \frac{K_{m} K_{B}}{J}\right)_{P}=164.8(1) 1.377(1.043) \frac{10}{1.5} \frac{1.22(1)}{0.30} \\&=6417 psi\end{aligned}

 

Substituting the appropriate terms for the pinion into Eq. (14–41) gives

 

S_{F}=\frac{S_{t} Y_{N} /\left(K_{T} K_{R}\right)}{\sigma}=\frac{\text { fully corrected bending strength }}{\text { bending stress }} (14–41)

 

\left(S_{F}\right)_{P}=\left(\frac{S_{t} Y_{N} /\left(K_{T} K_{R}\right)}{\sigma}\right)_{P}=\frac{31350(0.977) /[1(0.85)]}{6417}=5.62

 

Gear tooth bending. Substituting the appropriate terms for the gear into Eq. (14–15) gives

 

(\sigma)_{G}=164.8(1) 1.377(1.052) \frac{10}{1.5} \frac{1.22(1)}{0.40}=4854 psi

 

Substituting the appropriate terms for the gear into Eq. (14–41) gives

 

\left(S_{F}\right)_{G}=\frac{28260(0.996) /[1(0.85)]}{4854}=6.82

 

(b) Pinion tooth wear. Substituting the appropriate terms for the pinion into Eq. (14–16) gives

 

\sigma_{c}=\left\{\begin{array}{ll}C_{p} \sqrt{W^{t} K_{o} K_{v} K_{s} \frac{K_{m}}{d_{P} F} \frac{C_{f}}{I}} & \text { (U.S. customary units) } \\Z_{E} \sqrt{W^{t} K_{o} K_{v} K_{s} \frac{K_{H}}{d_{w 1} b} \frac{Z_{R}}{Z_{I}}} & \text { (SI units) }\end{array}\right. (14–16)

 

\begin{aligned}\left(\sigma_{c}\right)_{p} &=C_{p}\left(W^{t} K_{o} K_{v} K_{s} \frac{K_{m}}{d_{p} F} \frac{C_{f}}{I}\right)_{p}^{1 / 2} \\&=2300\left[164.8(1) 1.377(1.043) \frac{1.22}{1.7(1.5)} \frac{1}{0.121}\right]^{1 / 2}=70360 psi\end{aligned}

 

Substituting the appropriate terms for the pinion into Eq. (14–42) gives

 

S_{H}=\frac{S_{c} Z_{N} C_{H} /\left(K_{T} K_{R}\right)}{\sigma_{c}}=\frac{\text { fully corrected contact strength }}{\text { contact stress }} (14–42)

 

\left(S_{H}\right)_{P}=\left[\frac{S_{c} Z_{N} /\left(K_{T} K_{R}\right)}{\sigma_{c}}\right]_{P}=\frac{106400(0.948) /[1(0.85)]}{70360}=1.69

 

Gear tooth wear. The only term in Eq. (14–16) that changes for the gear is K_{s}. Thus,

 

\left(\sigma_{c}\right)_{G}=\left[\frac{\left(K_{s}\right)_{G}}{\left(K_{s}\right)_{P}}\right]^{1 / 2}\left(\sigma_{c}\right)_{P}=\left(\frac{1.052}{1.043}\right)^{1 / 2} 70360=70660 psi

 

Substituting the appropriate terms for the gear into Eq. (14–42) with C_{H}=1.005 gives

 

\left(S_{H}\right)_{G}=\frac{93500(0.973) 1.005 /[1(0.85)]}{70660}=1.52

 

(c) For the pinion, we compare \left(S_{F}\right) P \text { with }\left(S_{H}\right)_{P}^{2} , or 5.73 with 1.69^{2}=2.86, so the threat in the pinion is from wear. For the gear, we compare \left(S_{F}\right)_{G} \text { with }\left(S_{H}\right)_{G}^{2}, or 6.96 with 1.52^{2}=2.31, so the threat in the gear is also from wear.

2.3
14.4..
14.4....
14.4....
14.4.....
14.4......
14.4.......
14.4........

Related Answered Questions