There will be many terms to obtain so use Figs. 14–17 and 14–18 as guides to what is needed.
d_{P}=N_{P} / P_{d}=17 / 10=1.7 \text { in } \quad d_{G}=52 / 10=5.2 \text { in }
V=\frac{\pi d_{P} n_{P}}{12}=\frac{\pi(1.7) 1800}{12}=801.1 ft / min
W^{t}=\frac{33000 H}{V}=\frac{33000(4)}{801.1}=164.8 lbf
Assuming uniform loading, K_{o}=1. To evaluate K_{v}, from Eq. (14–28) with a quality number O_{n}=6,
\begin{array}{l}A=50+56(1-B) \\B=0.25\left(12-Q_{v}\right)^{2 / 3}\end{array} (14–28)
\begin{array}{l}B=0.25(12-6)^{2 / 3}=0.8255 \\A=50+56(1-0.8255)=59.77\end{array}
Then from Eq. (14–27) the dynamic factor is
K_{v}=\left\{\begin{array}{ll}\left(\frac{A+\sqrt{V}}{A}\right)^{B} & V \text { in } ft / min \\\left(\frac{A+\sqrt{200 V}}{A}\right)^{B} & V \text { in } m / s\end{array}\right. (14–27)
K_{v}=\left(\frac{59.77+\sqrt{801.1}}{59.77}\right)^{0.8255}=1.377
To determine the size factor, Ks , the Lewis form factor is needed. From Table 14–2, with N_{P}=17 \text { teeth } teeth, Y_{P}=0.303. Interpolation for the gear with N_{G}=52 teeth yields Y_{G}=0.412. Thus from Eq. (a) of Sec. 14–10, with F = 1.5 in,
Table 14–2 Values of the Lewis Form Factor Y (TheseValues Are for a Normal Pressure Angle of 20°, Full-Depth Teeth, and a Diametral Pitch of Unity in the Plane of Rotation) |
Number of Teeth |
Y |
Number of Teeth |
Y |
12 |
0.245 |
28 |
0.353 |
13 |
0.261 |
30 |
0.359 |
14 |
0.277 |
34 |
0.371 |
15 |
0.29 |
38 |
0.384 |
16 |
0.296 |
43 |
0.397 |
17 |
0.303 |
50 |
0.409 |
18 |
0.309 |
60 |
0.422 |
19 |
0.314 |
75 |
0.435 |
20 |
0.322 |
100 |
0.447 |
21 |
0.328 |
150 |
0.46 |
22 |
0.331 |
300 |
0.472 |
24 |
0.337 |
400 |
0.48 |
26 |
0.346 |
Rack |
0.485 |
\sigma=\frac{M}{I / c}=\frac{6 W^{t} l}{F t^{2}} (a)
\left(K_{s}\right)_{P}=1.192\left(\frac{1.5 \sqrt{0.303}}{10}\right)^{0.0535}=1.043
\left(K_{s}\right)_{G}=1.192\left(\frac{1.5 \sqrt{0.412}}{10}\right)^{0.0535}=1.052
The load distribution factor K_{m} is determined from Eq. (14–30), where five terms are needed. They are, where F = 1.5 in when needed:
K_{m}=C_{m f}=1+C_{m c}\left(C_{p f} C_{p m}+C_{m a} C_{e}\right) (14–30)
Uncrowned, Eq. (14–30): C_{m c}=1,
K_{m}=C_{m f}=1+C_{m c}\left(C_{p f} C_{p m}+C_{m a} C_{e}\right) (14–30)
Eq. (14–32): C_{p f}=1.5 /[10(1.7)]-0.0375+0.0125(1.5)=0.0695
C_{p f}=\left\{\begin{array}{ll}\frac{F}{10 d}-0.025 & F \leq 1 \text { in } \\\frac{F}{10 d}-0.0375+0.0125 F & 1<F \leq 17 \text { in } \\\frac{F}{10 d}-0.1109+0.0207 F-0.000228 F^{2} & 17<F \leq 40 \text { in }\end{array}\right. (14–32)
Bearings immediately adjacent, Eq. (14–33): C_{p m}=1
C_{p m}=\left\{\begin{array}{ll}1 & \text { for straddle-mounted pinion with } S_{1} / S<0.175 \\1.1 & \text { for straddle-mounted pinion with } S_{1} / S \geq 0.175\end{array}\right. (14–33)
Commercial enclosed gear units (Fig. 14–11): C_{m a}=0.15
Eq. (14–35): C_{e}=1
C_{e}=\left\{\begin{array}{cl}0.8 & \text { for gearing adjusted at assembly, or compatibility } \\1 & \text { is improved by lapping, or both }\end{array}\right. (14–35)
Thus,
K_{m}=1+C_{m c}\left(C_{p f} C_{p m}+C_{m a} C_{e}\right)=1+(1)[0.0695(1)+0.15(1)]=1.22
Assuming constant thickness gears, the rim-thickness factor K_{B}=1. The speed ratio is m_{G}=N_{G} / N_{P}=52 / 17=3.059. The load cycle factors given in the problem statement, with N \text { (pinion) }=10^{8} cycles and N(\text { gear })=10^{8} / m_{G}=10^{8} / 3.059 cycles, are
\left(Y_{N}\right)_{P}=1.3558\left(10^{8}\right)^{-0.0178}=0.977
\left(Y_{N}\right)_{G}=1.3558\left(10^{8} / 3.059\right)^{-0.0178}=0.996
From Table 14.10, with a reliability of 0.9, K_{R}=0.85. From Fig. 14–18, the temperature and surface condition factors are K_{T}=1 \text { and } C_{f}=1. From Eq. (14–23), with m_{N}=1 for spur gears,
Table 14–10 Reliability Factors K_{R}\left(Y_{Z}\right) Source: ANSI/AGMA 2001-D04. |
Reliability |
K_{R}\left(Y_{Z}\right) |
0.9999 |
1.50 |
0.999 |
1.25 |
0.99 |
1.00 |
0.90 |
0.85 |
0.50 |
0.70 |
I=\left\{\begin{array}{ll}\frac{\cos \phi_{t} \sin \phi_{t}}{2 m_{N}} \frac{m_{G}}{m_{G}+1} & \text { external gears } \\\frac{\cos \phi_{t} \sin \phi_{t}}{2 m_{N}} \frac{m_{G}}{m_{G}-1} & \text { internal gears }\end{array}\right. (14–23)
I=\frac{\cos 20^{\circ} \sin 20^{\circ}}{2} \frac{3.059}{3.059+1}=0.121
From Table 14–8, C_{p}=2300 \sqrt{ ps }.
Table 14–8 Elastic Coefficient C_{p}\left(Z_{E}\right), \sqrt{ psi }(\sqrt{ MPa }) Source: AGMA 218.01 |
Gear Material and Modulus of Elasticity E_{G}, lbf / in ^{2}( MPa )^{*} |
Pinion Material |
Pinion Modulus of \begin{array}{l}\text { Elasticity Ep }\\\text { psi (MPa) * }\end{array} |
Steel \begin{array}{l}30 \times 10^{6} \\\left(2 \times 10^{5}\right)\end{array} |
Malleable Iron \begin{array}{c}25 \times 10^{6} \\\left(1.7 \times 10^{5}\right)\end{array} |
Nodular Iron \begin{array}{c}24 \times 10^{6} \\\left(1.7 \times 10^{5}\right)\end{array} |
Cast Iron \begin{array}{r}22 \times 10^{6} \\\left(1.5 \times 10^{5}\right)\end{array} |
Aluminum Bronze \begin{array}{r}17.5 \times 10^{6} \\\left(1.2 \times 10^{5}\right)\end{array} |
Tin Bronze \begin{array}{c}16 \times 10^{6} \\\left(1.1 \times 10^{5}\right)\end{array} |
Steel |
30 \times 10^{6} |
2300 |
2180 |
2160 |
2100 |
1950 |
1900 |
|
\left(2 \times 10^{5}\right) |
(191) |
(181) |
(179) |
(174) |
(162) |
(158) |
Malleable iron |
25 \times 10^{6} |
2180 |
2090 |
2070 |
2020 |
1900 |
1850 |
|
\left(1.7 \times 10^{5}\right) |
(181) |
(174) |
(172) |
(168) |
(158) |
(154) |
Nodular iron |
24 \times 10^{6} |
2160 |
2070 |
2050 |
2000 |
1880 |
1830 |
|
\left(1.7 \times 10^{5}\right) |
(179) |
(172) |
(170) |
(166) |
(156) |
(152) |
Cast iron |
22 \times 10^{6} |
2100 |
2020 |
2000 |
1960 |
1850 |
1800 |
|
\left(1.5 \times 10^{5}\right) |
(174) |
(168) |
(166) |
(163) |
(154) |
(149) |
Aluminum bronze |
17.5 \times 10^{6} |
1950 |
1900 |
1880 |
1850 |
1750 |
1700 |
|
\left(1.2 \times 10^{5}\right) |
(162) |
(158) |
(156) |
(154) |
(145) |
(141) |
Tin bronze |
16 \times 10^{6} |
1900 |
1850 |
1830 |
1800 |
1700 |
1650 |
|
\left(1.1 \times 10^{5}\right) |
(158) |
(154) |
(152) |
(149) |
(141) |
(137) |
Next, we need the terms for the gear endurance strength equations. From Table 14–3, for grade 1 steel with H_{B P}=240 \text { and } H_{B G}=200, we use Fig. 14–2, which gives
Table 14–3 Repeatedly Applied Bending Strength S_{t} \text { at } 10^{7} Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04. |
Material Designation |
Heat Treatment |
Minimum Surface \text { Hardness } 1 |
Allowable Bending Stress Number S _{ t ,}^{2} psi |
Grade 1v |
Grade 2 |
Grade 3 |
\text { Steel }^{3} |
Through-hardened |
See Fig. 14–2 |
See Fig. 14–2 |
See Fig. 14–2 |
— |
|
\text { Flame }^{4} or induction |
See Table 8* |
45 000 |
55 000 |
— |
\text { hardened }{ }^{4} with type |
|
|
|
|
\text { A pattern }{ }^{5} |
\text { Flame }^{4} or induction |
See Table 8* |
22 000 |
22 000 |
— |
\text { hardened }{ }^{4} with type |
|
|
|
|
\text { B pattern }{ }^{5} |
Carburized and hardened |
See Table 9* |
55 000 |
\begin{array}{l}65000 \text { or } \\70000^{6}\end{array} |
75 000 |
\text { Nitrided }^{4,7} (through- hardened steels) |
83.5 HR15N |
See Fig. 14–3 |
See Fig. 14–3 |
— |
Nitralloy 135M, Nitralloy N, and 2.5% chrome (no aluminum) |
\text { Nitrided }^{4,7} |
87.5 HR15N |
See Fig. 14–4 |
See Fig. 14–4 |
See Fig. 14–4 |
Notes: See ANSI/AGMA 2001-D04 for references cited in notes 1–7.
{ }^{1} \text { Hardness } to be equivalent to that at the root diameter in the center of the tooth space and face width.
{ }^{2} \text { See } tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.
{ }^{3} \text { The } steel selected must be compatible with the heat treatment process selected and hardness required.
{ }^{3} \text { The } allowable stress numbers indicated may be used with the case depths prescribed in 16.1.
{ }^{5} See figure 12 for type A and type B hardness patterns.
{ }^{6} \text { If } bainite and microcracks are limited to grade 3 levels, 70 000 psi may be used.
{ }^{3} \text { The } overload capacity of nitrided gears is low. Since the shape of the effective S-N curve is flat, the sensitivity to shock should be investigated before proceeding with the design. [7]
*Tables 8 and 9 of ANSI/AGMA 2001-D04 are comprehensive tabulations of the major metallurgical factors affecting S_{t} \text { and } S_{c} of flame-hardened and induction-hardened (Table 8) and carburized and hardened (Table 9) steel gears.4
Similarly, from Table 14–6, we use Fig. 14–5, which gives
Table 14–6 Repeatedly Applied Contact Strength S_{c} \text { at } 10^{7} Cycles and 0.99 Reliability for Steel Gears Source: ANSI/AGMA 2001-D04. |
Material Designation |
Heat Treatment |
Minimum Surface \text { Hardness } 1 |
Allowable Contact Stress \text { Number, }^{2}{ }^{\prime} S_{c}, \text { psi } |
Grade 1 |
Grade 2 |
Grade 3 |
\text { Steel }^{3} |
Through \text { hardened }{ }^{4} |
See Fig. 14–5 |
See Fig. 14–5 |
See Fig. 14–5 |
— |
|
\text { Flame }^{5} or induction |
50 HRC |
170 000 |
190 000 |
— |
\text { hardened }^{5} |
54 HRC |
175 000 |
195 000 |
— |
Carburized and \text { hardened }^{5} |
\text { See Table } 9^{*} |
180 000 |
225 000 |
275 000 |
\text { Nitrided }^{5} (through |
83.5 HR15N |
150 000 |
163 000 |
175 000 |
hardened steels) |
84.5 HR15N |
155 000 |
168 000 |
180 000 |
2.5% chrome (no aluminum) |
\text { Nitrided }^{5} |
87.5 HR15N |
155 000 |
172 000 |
189 000 |
Nitralloy 135M |
\text { Nitrided }^{5} |
90.0 HR15N |
170 000 |
183 000 |
195 000 |
Nitralloy N |
\text { Nitrided }^{5} |
90.0 HR15N |
172 000 |
188 000 |
205 000 |
2.5% chrome (no aluminum) |
\text { Nitrided }^{5} |
90.0 HR15N |
176 000 |
196 000 |
216 000 |
Notes: See ANSI/AGMA 2001-D04 for references cited in notes 1–5.
{ }^{1} \text { Hardness } to be equivalent to that at the start of active profile in the center of the face width.
{ }^{2} \text { See } Tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.
{ }^{3} \text { The } steel selected must be compatible with the heat treatment process selected and hardness required.
{ }^{4} \text { These } materials must be annealed or normalized as a minimum.
{ }^{5} \text { The } allowable stress numbers indicated may be used with the case depths prescribed in 16.1.
*Table 9 of ANSI/AGMA 2001-D04 is a comprehensive tabulation of the major metallurgical factors affecting S_{t} \text { and } S_{c} of carburized and hardened steel gears.
\left(S_{c}\right)_{P}=322(240)+29100=106400 psi
\left(S_{c}\right)_{G}=322(200)+29100=93500 psi
From Fig. 14–15,
\left(Z_{N}\right)_{P}=1.4488\left(10^{8}\right)^{-0.023}=0.948
\left(Z_{N}\right)_{G}=1.4488\left(10^{8} / 3.059\right)^{-0.023}=0.973
For the hardness ratio factor C_{H}, the hardness ratio is H_{B P} / H_{B G}=240 / 200=1.2. Then, from Sec. 14–12,
\begin{aligned}A^{\prime} &=8.98\left(10^{-3}\right)\left(H_{B P} / H_{B G}\right)-8.29\left(10^{-3}\right) \\&=8.98\left(10^{-3}\right)(1.2)-8.29\left(10^{-3}\right)=0.00249\end{aligned}
Thus, from Eq. (14–36),
C_{H}=1.0+A^{\prime}\left(m_{G}-1.0\right) (14–36)
C_{H}=1+0.00249(3.059-1)=1.005
(a) Pinion tooth bending. Substituting the appropriate terms for the pinion into Eq. (14–15) gives
\sigma=\left\{\begin{array}{ll}W^{t} K_{o} K_{v} K_{s} \frac{P_{d}}{F} \frac{K_{m} K_{B}}{J} & \text { (U.S. customary units) } \\W^{t} K_{o} K_{v} K_{s} \frac{1}{b m_{t}} \frac{K_{H} K_{B}}{Y_{J}} & \text { (SI units) }\end{array}\right. (14–15)
\begin{aligned}(\sigma)_{P} &=\left(W^{t} K_{o} K_{v} K_{s} \frac{P_{d}}{F} \frac{K_{m} K_{B}}{J}\right)_{P}=164.8(1) 1.377(1.043) \frac{10}{1.5} \frac{1.22(1)}{0.30} \\&=6417 psi\end{aligned}
Substituting the appropriate terms for the pinion into Eq. (14–41) gives
S_{F}=\frac{S_{t} Y_{N} /\left(K_{T} K_{R}\right)}{\sigma}=\frac{\text { fully corrected bending strength }}{\text { bending stress }} (14–41)
\left(S_{F}\right)_{P}=\left(\frac{S_{t} Y_{N} /\left(K_{T} K_{R}\right)}{\sigma}\right)_{P}=\frac{31350(0.977) /[1(0.85)]}{6417}=5.62
Gear tooth bending. Substituting the appropriate terms for the gear into Eq. (14–15) gives
(\sigma)_{G}=164.8(1) 1.377(1.052) \frac{10}{1.5} \frac{1.22(1)}{0.40}=4854 psi
Substituting the appropriate terms for the gear into Eq. (14–41) gives
\left(S_{F}\right)_{G}=\frac{28260(0.996) /[1(0.85)]}{4854}=6.82
(b) Pinion tooth wear. Substituting the appropriate terms for the pinion into Eq. (14–16) gives
\sigma_{c}=\left\{\begin{array}{ll}C_{p} \sqrt{W^{t} K_{o} K_{v} K_{s} \frac{K_{m}}{d_{P} F} \frac{C_{f}}{I}} & \text { (U.S. customary units) } \\Z_{E} \sqrt{W^{t} K_{o} K_{v} K_{s} \frac{K_{H}}{d_{w 1} b} \frac{Z_{R}}{Z_{I}}} & \text { (SI units) }\end{array}\right. (14–16)
\begin{aligned}\left(\sigma_{c}\right)_{p} &=C_{p}\left(W^{t} K_{o} K_{v} K_{s} \frac{K_{m}}{d_{p} F} \frac{C_{f}}{I}\right)_{p}^{1 / 2} \\&=2300\left[164.8(1) 1.377(1.043) \frac{1.22}{1.7(1.5)} \frac{1}{0.121}\right]^{1 / 2}=70360 psi\end{aligned}
Substituting the appropriate terms for the pinion into Eq. (14–42) gives
S_{H}=\frac{S_{c} Z_{N} C_{H} /\left(K_{T} K_{R}\right)}{\sigma_{c}}=\frac{\text { fully corrected contact strength }}{\text { contact stress }} (14–42)
\left(S_{H}\right)_{P}=\left[\frac{S_{c} Z_{N} /\left(K_{T} K_{R}\right)}{\sigma_{c}}\right]_{P}=\frac{106400(0.948) /[1(0.85)]}{70360}=1.69
Gear tooth wear. The only term in Eq. (14–16) that changes for the gear is K_{s}. Thus,
\left(\sigma_{c}\right)_{G}=\left[\frac{\left(K_{s}\right)_{G}}{\left(K_{s}\right)_{P}}\right]^{1 / 2}\left(\sigma_{c}\right)_{P}=\left(\frac{1.052}{1.043}\right)^{1 / 2} 70360=70660 psi
Substituting the appropriate terms for the gear into Eq. (14–42) with C_{H}=1.005 gives
\left(S_{H}\right)_{G}=\frac{93500(0.973) 1.005 /[1(0.85)]}{70660}=1.52
(c) For the pinion, we compare \left(S_{F}\right) P \text { with }\left(S_{H}\right)_{P}^{2} , or 5.73 with 1.69^{2}=2.86, so the threat in the pinion is from wear. For the gear, we compare \left(S_{F}\right)_{G} \text { with }\left(S_{H}\right)_{G}^{2}, or 6.96 with 1.52^{2}=2.31, so the threat in the gear is also from wear.