Question 9.6.1: Determine the singular values of the 5 × 3 matrix A = [ 1 0 ...
Determine the singular values of the 5 × 3 matrix
A=\left[\begin{array}{lll}1 & 0 & 1 \\0 & 1 & 0 \\0 & 1 & 1 \\0 & 1 & 0 \\1 & 1 & 0\end{array}\right].
Learn more on how we answer questions.
We have
A^{t}=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 1 \\0 & 1 & 1 & 1 & 1 \\1 & 0 & 1 & 0 & 0\end{array}\right] \quad \text { so } \quad A^{t} A=\left[\begin{array}{lll}2 & 1 & 1 \\1 & 4 & 1 \\1 & 1 & 2\end{array}\right].
The characteristic polynomial of A^{t} A is
p\left(A^{t} A\right)=\lambda^{3}-8 \lambda^{2}+17 \lambda-10=(\lambda-5)(\lambda-2)(\lambda-1) ,
so the eigenvalues of A^{t} A \text { are } \lambda_{1}=s_{1}^{2}=5, \lambda_{2}=s_{2}^{2}=2, \text { and } \lambda_{3}=s_{3}^{2}=1 . As a consequence, the singular values of A are s_{1}=\sqrt{5}, s_{2}=\sqrt{2}, s_{3}=1 , and in the singular value decomposition of A we have
S=\left[\begin{array}{ccc}\sqrt{5} & 0 & 0 \\0 & \sqrt{2} & 0 \\0 & 0 & 1 \\0 & 0 & 0 \\0 & 0 & 0\end{array}\right].