Question 9.6.2: Determine the singular value decomposition of the 5 × 3 matr...

Determine the singular value decomposition of the 5 × 3 matrix

A=\left[\begin{array}{lll}1 & 0 & 1 \\0 & 1 & 0 \\0 & 1 & 1 \\0 & 1 & 0 \\1 & 1 & 0\end{array}\right].

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We found in Example 1 that A has the singular values s_{1}=\sqrt{5}, s_{2}=\sqrt{2} , and s_{3}=1 , so

S=\left[\begin{array}{ccc}\sqrt{5} & 0 & 0 \\0 & \sqrt{2} & 0 \\0 & 0 & 1 \\0 & 0 & 0 \\0 & 0 & 0\end{array}\right].

Eigenvectors of A^{t} A corresponding to s_{1}=\sqrt{5}, s_{2}=\sqrt{2} \text { and } s_{3}=1 , are, respectively, (1,2,1)^{t},(1,-1,1)^{t}, \text { and }(-1,0,1)^{t} (see Exercise 5). Normalizing these vectors and using the values for the columns of V gives

V=\left[\begin{array}{ccc} \frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{6}}{3} & -\frac{\sqrt{3}}{3} & 0 \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} \end{array}\right] \quad \text { and } \quad V^{t}=\left[\begin{array}{ccc} \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{array}\right]

The first 3 columns of U are therefore

\begin{aligned}& u _{1}=\frac{1}{\sqrt{5}} \cdot A\left(\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{6}\right)^{t}=\left(\frac{\sqrt{30}}{15}, \frac{\sqrt{30}}{15}, \frac{\sqrt{30}}{10}, \frac{\sqrt{30}}{15}, \frac{\sqrt{30}}{10}\right)^{t} \\& u _{2}=\frac{1}{\sqrt{2}} \cdot A\left(\frac{\sqrt{3}}{3},-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)^{t}=\left(\frac{\sqrt{6}}{3},-\frac{\sqrt{6}}{6}, 0,-\frac{\sqrt{6}}{6}, 0\right)^{t} \\& u _{3}=1 \cdot A\left(-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^{t}=\left(0,0, \frac{\sqrt{2}}{2}, 0,-\frac{\sqrt{2}}{2}\right)^{t}\end{aligned}

To determine the two remaining columns of U we first need two vectors x _{4} \text { and } x _{5} so that \left\{ u _{1}, u _{2}, u _{3}, x _{4}, x _{5}\right\}  is a linearly independent set. Then we apply the Gram Schmidt process to obtain u _{4} \text { and } u _{5} \text { so that }\left\{ u _{1}, u _{2}, u _{3}, u _{4}, u _{5}\right\} is an orthogonal set. Two vectors that satisfy are

(1,1,-1,1,-1)^{t} \quad \text { and }(0,1,0,-1,0)^{t} .

Normalizing the vectors u _{i} , for i = 1, 2, 3, 4, and 5 produces the matrix U and the singular value decomposition as

A=U S V^{t}=\left[\begin{array}{ccccc}\frac{\sqrt{30}}{15} & \frac{\sqrt{6}}{3} & 0 & \frac{\sqrt{5}}{5} & 0 \\\frac{\sqrt{30}}{15} & -\frac{\sqrt{6}}{6} & 0 & \frac{\sqrt{5}}{5} & \frac{\sqrt{2}}{2} \\\frac{\sqrt{30}}{10} & 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{5}}{5} & 0 \\\frac{\sqrt{30}}{15} & -\frac{\sqrt{6}}{3} & 0 & \frac{\sqrt{5}}{5} & -\frac{\sqrt{2}}{2} \\\frac{\sqrt{30}}{10} & 0 & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{5}}{5} & 0\end{array}\right]\left[\begin{array}{ccc}\sqrt{5} & 0 & 0 \\0 & \sqrt{2} & 0 \\0 & 0 & 1 \\0 & 0 & 0 \\0 & 0 & 0\end{array}\right]

 

\times\left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6} \\\frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\-\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\end{array}\right].

Related Answered Questions

Question: 9.6.1

Verified Answer:

We have A^{t}=\left[\begin{array}{lllll}1 &...