Question 6.5: An agitator of diameter D, requires power P, to rotate at a ...

An agitator of diameter D , requires power P , to rotate at a constant speed  N , in a liquid of density \rho , and viscosity \mu . Show (i) with the help of the Pi theorem that P=\rho N^{3} D^{5} F\left(\rho N D^{2} / \mu\right) and (ii) An agitator of 225 mm diameter rotating at 23 rev/s in water requires a driving torque of 1.1 Nm. Calculate the corresponding speed and the torque required to drive a similar agitator of 675 mm diameter rotating in air (Viscosities: air 1.86 \times 10^{5}  Pas, water 1.01 \times 10^{-3}  Pas. Densities: air 1.20 \mathrm{~kg} / \mathrm{m}^{3} , water 1000 \mathrm{~kg} / \mathrm{m}^{3} ).

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(i) The problem is described by 5 variables as

F(P, N, D, \rho, \mu)=0

These variables are expressed by 3 fundamental dimensions M, L, and T. Therefore, the number of \pi  terms  = (5 – 3) = 2. N, D,  and \rho are taken as the repeating variables in determining the \pi terms.

Then,         \pi_{1}=N^{a} D^{b} \rho^{c} P         (6.25)

\pi_{2}=N^{a} D^{b} \rho^{c} \mu        (6.26)

Substituting the variables of Eq. (6.25) and (6.26) in terms of their fundamental dimensions M, L and T we get,

\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}=\left(\mathrm{T}^{-1}\right)^{a}(\mathrm{~L})^{b}\left(\mathrm{ML}^{-3}\right)^{c} \mathrm{ML}^{2} \mathrm{~T}^{-3}               (6.27)

\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}=\left(\mathrm{T}^{-1}\right)^{a}(\mathrm{~L})^{b}\left(\mathrm{ML}^{-3}\right)^{c} \mathrm{ML}^{-1} \mathrm{~T}^{-1}                    (6.28)

Equating the exponents of M, L and T from Eq. (6.27), we get

c+1=0

b-3 c+2=0

-a-3=0

which give  a=-3, b=-5, c=-1

and hence \pi_{1}=\frac{P}{\rho N^{3} D^{5}}

Similarly, from Eq. (6.28)

c+1=0

b-3 c-1=0

-a-1=0

which give  a=-1, b=-2, c=-1

Hence \pi_{2}=\frac{\mu}{\rho N D^{2}}

Therefore, the problem can be expressed in terms of independent dimensionless parameters as

f\left(\frac{P}{\rho N^{3} D^{5}}, \frac{\mu}{\rho N D^{2}}\right)=0

which is equivalent to

\psi\left(\frac{P}{\rho N^{3} D^{5}}, \frac{\rho N D^{2}}{\mu}\right)=0

Or  \frac{P}{\rho N^{3} D^{5}}=F\left(\frac{\rho N D^{2}}{\mu}\right)

Or  P=\rho N^{3} D^{5} F\left(\frac{\rho N D^{2}}{\mu}\right)

(ii)

D_{1}=225 mm

D_{2}=675 mm

N_{1}=23 rev / s

N_{2}=? 
\rho_{1}=1000 kg / m ^{3}

\rho_{2}=1.20 kg / m ^{3}

\mu_{1}=1.01 \times 10^{-3} Pas

\mu_{2}=1.86 \times 10^{-5} Pas
P_{1}=2 \pi \times 23 \times 1.1 W

P_{2}=?

From the condition of similarity as established above,

\frac{\rho_{2} N_{2} D_{2}^{2}}{\mu_{2}}=\frac{\rho_{1} N_{1} D_{1}^{2}}{\mu_{1}}

 

N_{2}=N_{1}\left(\frac{D_{1}}{D_{2}}\right)^{2} \frac{\rho_{1}}{\rho_{2}} \frac{\mu_{2}}{\mu_{1}}

 

=23 rev / s \left(\frac{225}{675}\right)^{2} \frac{1000}{1.20} \frac{1.86 \times 10^{-5}}{1.01 \times 10^{-3}}

= 39.22 rev/s

Again,        \frac{P_{2}}{\rho_{2} N_{2}^{3} D_{2}^{5}}=\frac{P_{1}}{\rho_{1} N_{1}^{3} D_{1}^{5}}

Or \frac{P_{2}}{P_{1}}=\left(\frac{D_{2}}{D_{1}}\right)^{5}\left(\frac{N_{2}}{N_{1}}\right)^{3} \frac{\rho_{2}}{\rho_{1}}

Or  \frac{T_{2}}{T_{1}}=\left(\frac{D_{2}}{D_{1}}\right)^{5}\left(\frac{N_{2}}{N_{1}}\right)^{2} \frac{\rho_{2}}{\rho_{1}}

where, T represents the torque and satisfies the relation P=2 \pi N T

Hence, T_{2}=T_{1}\left(\frac{D_{2}}{D_{1}}\right)^{5}\left(\frac{N_{2}}{N_{1}}\right)^{2} \frac{\rho_{2}}{\rho_{1}}

 

=1.1 Nm \left(\frac{675}{225}\right)^{5}\left(\frac{39.22}{23}\right)^{2} \frac{1.20}{1000}

 

= 0.933 Nm

Related Answered Questions