Question 12.10: A circular culvert has a capacity of 0.5 m^3/s when flowing ...

A circular culvert has a capacity of 0.5 \mathrm{~m}^{3} / \mathrm{s} when flowing full. Velocity should not be less than 0.7 m/s if the depth is one-fourth of the diameter. Assuming uniform flow, find the diameter and the slope, taking Manning’s roughness coefficient n = 0.012.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Putting h/d = 1/4 in Eq. (12.41), we get

\frac{h}{d}=\frac{1}{2}-\frac{1}{2} \cos \theta                 (12.41)

\frac{1}{4}=\frac{1}{2}-\frac{1}{2} \cos \theta

Or     \cos \theta=\frac{1}{2}

which gives                 \theta=\pi / 3 \text { radians. }

From Eq. (12.40), we get

\frac{V}{V_{\text {full }}}=\left(1-\frac{\sin 2 \theta}{2 \theta}\right)^{2 / 3}                 (12.40)

\frac{V}{V_{\text {full }}}=\left[1-\frac{\sin 2 \pi / 3}{2 \pi / 3}\right]^{2 / 3}

= 0.70

Hence,       V_{\text {full }}=\frac{V}{0.70}=\frac{0.70}{0.70}=1 \mathrm{~m} / \mathrm{s}

From continuity    Q_{\text {full }}=\frac{\pi}{4} d^{2} V_{\text {full }}

Or     0.5=\frac{\pi}{4} d^{2} \times 1

which gives d, the diameter for the culvert = 0.798 m. When flowing full, the hydraulic radius

R_{h}=A / P=d / 4=0.798 / 4=0.1995 \mathrm{~m}

From Eq. (12.9)

V=(1 / n) R_{h}^{2 / 3} S^{1 / 2}                           (12.9)

1=\frac{(0.1995)^{2 / 3}}{0.012} S^{1 / 2}

Or     S=\frac{(0.012)(0.012)}{(0.1995)^{4 / 3}}=0.0012

Related Answered Questions