Question 12.11: A rectangular channel, 6.1 m wide, carries 11.32 m^3/s and d...
A rectangular channel, 6.1 m wide, carries 11.32 \mathrm{~m}^{3} / \mathrm{s} and discharges onto a 6.1 m wide apron having no slope with a mean velocity of 6.1 m/s. (i) What is the height of the hydraulic jump? (ii) What energy is absorbed (lost) in the jump?
Learn more on how we answer questions.
(i) V_{1}=6.1 \mathrm{~m} / \mathrm{s}
q_{1} (the rate of discharge per unit width) = 11.32/6.1
=1.86 \mathrm{~m}^{3} / \mathrm{sm} width
Therefore, h_{1}=q_{1} / V_{1}=1.86 / 6.1=0.305 \mathrm{~m}
And \mathrm{Fr}_{1}=V_{1} /\left(g h_{1}\right)^{1 / 2}=6.1 /(9.81 \times 0.305)^{1 / 2}=3.53
using
Eq. (12.46),
\frac{h_{2}}{h_{1}}=\frac{1}{2}\left[\left(1+8 \mathrm{Fr}_{1}^{2}\right)^{1 / 2}-1\right] (12.46)
h_{2} / h_{1}=\frac{1}{2}\left[\left\{1+8(3.53)^{2}\right\}^{1 / 2}-1\right]from which h_{2}=1.38 \mathrm{~m}
Hence, the height of the hydraulic jump = 1.38 – 0.305 = 1.075 m using
Eq. (12.48)
h_{j}=\frac{\left(h_{2}-h_{1}\right)^{3}}{4 h_{1} h_{2}} (12.48)
Loss of head in the hydraulic jump h_{j}=\frac{(1.07)^{3}}{4 \times 0.305 \times 1.38}
= 0.73 m
Therefore the loss of total energy per second \rho g Q h_{j}
=\frac{9.81 \times 10^{3} \times(11.32) \times(0.73)}{10^{3}}=81.06 \mathrm{~kW}