Question 16.1: Air at a stagnation temperature of 27º C enters the impeller...

Air at a stagnation temperature of 27º C enters the impeller of a centrifugal compressor in the axial direction. The rotor which has 15 radial vanes, rotates at 20000 rpm. The stagnation pressure ratio between the diffuser outlet and the impeller inlet is 4 and the isentropic efficiency is 85%. Determine (i) the impeller tip radius and (ii) power input to the compressor when the mass flow rate is 2 kg/s. Assume a power input factor of 1.05 and a slip factor σ=12/n \sigma=1-2 / n , where n is the number of vanes. For air, take γ=1.4,R=287 J/kgK \gamma=1.4, R=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(i) From Eq (16.7), we can write

T3tT1t=T1t[(p3t/p1t)γ1γ1]ηc T_{3 t}-T_{1 t}=\frac{T_{1 t}\left[\left(p_{3 t} / p_{1 t}\right)^{\frac{\gamma-1}{\gamma}}-1\right]}{\eta_{c}}

again with the help of Eq (16.5) and T2t=T3t T_{2 t}=T_{3 t} it becomes

w=ΨσU22=cp(T2tT1t) w=\Psi \sigma U_{2}^{2}=c_{p}\left(T_{2 t}-T_{1 t}\right)                 (16.5)

U22=cpT1t[(p3t/p1t)γ1γ1]ηcσψ \mathrm{U}_{2}^{2}=\frac{c_{p} T_{1 t}\left[\left(p_{3 t} / p_{1 t}\right)^{\frac{\gamma-1}{\gamma}}-1\right]}{\eta_{c} \sigma \psi}

Here,         p3t/p1t=4 p_{3 t} / p_{1 t}=4

 

Tlt=300 K T_{\mathrm{lt}}=300 \mathrm{~K}

 

cp=γRγ1 c_{p}=\frac{\gamma R}{\gamma-1}

 

=1.4×2870.4 =\frac{1.4 \times 287}{0.4}

 

=1005 J/kgK =1005 \mathrm{~J} / \mathrm{kg} \mathrm{K}

 

σ=1215  \sigma=1-\frac{2}{15} 

 

=0.867 =0.867

 

ψ=1.05 \psi=1.05

Therefore, U22=1005×300×(40.41.41)0.85×0.867×1.05 U_{2}^{2}=\frac{1005 \times 300 \times\left(4^{\frac{0.4}{1.4}}-1\right)}{0.85 \times 0.867 \times 1.05}

which gives         U2=435 m/s U_{2}=435 \mathrm{~m} / \mathrm{s}

Thus the impeller tip radius is

r2=435×602π×20000 r_{2}=\frac{435 \times 60}{2 \pi \times 20000}

 

=0.21 m =0.21 \mathrm{~m}

(ii) Power input to the air =2×1.05×0.867×(435)21000 kW =\frac{2 \times 1.05 \times 0.867 \times(435)^{2}}{1000} \mathrm{~kW}

 

=344.52 kW =344.52 \mathrm{~kW}

Related Answered Questions