Question 16.3: A centrifugal compressor has an impeller tip speed of 360 m/...

A centrifugal compressor has an impeller tip speed of 360 m/s. Determine (i) the absolute Mach number of flow leaving the radial vanes of the impeller and (ii) the mass flow rate. The following data are given:

Impeller Tip speed 360 m/s
Radial component of flow velocity at impeller exit 30 m/s
Slip factor 0.9
Flow area at impeller exit 0.1 \mathrm{~m}^{2}
Power input factor 1.0
Isentropic efficiency 0.9
Inlet stagnation temperature 300 K
Inlet stagnation pressure 100 \mathrm{kN} / \mathrm{m}^{2}
R (for air) 287 J/kg K
g (for air) 1.4
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The absolute Mach number is the Mach number based on absolute velocity.

Therefore, M_{2}=\frac{V_{2}}{\sqrt{\gamma R T_{2}}}

Now V_{2} and T_{2} have to be determined.
From the velocity triangle at the impeller exit,

V_{2}=\sqrt{V_{w 2}^{2}+V_{f 2}^{2}}

In case of slip,    V_{w 2}=\sigma U_{2}

Hence,       V_{2}=\sqrt{\left(\sigma U_{2}\right)^{2}+V_{f 2}^{2}} 

 

=\sqrt{(0.9 \times 360)^{2}+(30)^{2}}

 

=325.38 \mathrm{~m} / \mathrm{s}

From Eq. (16.5)

w=\Psi \sigma U_{2}^{2}=c_{p}\left(T_{2 t}-T_{1 t}\right)

 

T_{2 t}=T_{1 t}+\frac{\psi \sigma U_{2}^{2}}{c_{p}}

 

\left[c_{p}=\frac{\gamma R}{\gamma-1}=\frac{1.4 \times 287}{0.4}=1005 \mathrm{~J} / \mathrm{kg} \mathrm{K}\right]

 

T_{2 t}=300+\frac{0.9 \times(360)^{2}}{1005}

 

=416 \mathrm{~K}

 

T_{2}=T_{2 t}-\frac{V_{2}^{2}}{2 c_{p}}

 

=416-\frac{(325.38)^{2}}{2 \times 1005} 

 

=363.33 \mathrm{~K}

Therefore, M_{2}=\frac{325.28}{\sqrt{1.4 \times 287 \times 363.33}}

=0.85 

Mass flow rate     \dot{m}=\rho_{2} A_{2} V_{f 2}

We have to find out \rho_{2}
With the help of Eq. (16.7),  we can write

\frac{p_{3 t}}{p_{1 t}}=\left(\frac{T_{3 t}^{\prime}}{T_{1 t}}\right)^{\frac{\gamma}{\gamma-1}}

 

=\left[1+\frac{\eta_{c}\left(T_{3 t}-T_{1 t}\right)}{T_{1 t}}\right]^{\gamma \gamma-1}               (16.7)

 

\frac{p_{2 t}}{p_{1 t}}=\left[1+\frac{0.9 \times(416-300)}{300}\right]^{\frac{1.4}{0.4}} 

=2.84

Again,        \frac{p_{2}}{p_{2 t}}=\left(\frac{T_{2}}{T_{2 t}}\right)^{\frac{1.4}{0.4}}=\left(\frac{363.33}{416}\right)^{\frac{1.4}{0.4}}=0.623

Hence,

p_{2}=0.623 p_{2 t}

 

=0.623 \times 2.84 p_{1 t}

 

=0.623 \times 2.84 \times 100 \mathrm{kPa}

 

=176.93 \mathrm{kPa}

Therefore, \dot{m}=\left(\frac{p_{2}}{R T_{2}}\right) \cdot A_{2} V_{f 2}

 

=\frac{176.93 \times 10^{3}}{287 \times 363.33} \times 0.1 \times 30

 

=5.09 \mathrm{~kg} / \mathrm{s}

Related Answered Questions