Question 10.14: A satellite is in torque-free motion. A control moment gyro,...

A satellite is in torque-free motion. A control moment gyro, spinning at the constant rate \omega_{s}, is gimbaled about the spacecraft y and z axes, with φ = 0 and φ = 90° (cf. Figure 10.26 ). The spacecraft angular velocity is \omega=\omega_{z} \hat{ k }. If the spin axis of the gyro, initially along the x direction, is rotated around the y axis at the rate \dot{\theta}, what is the resulting angular acceleration of the spacecraft?

10.26
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Substituting \omega_{x}=\omega_{y}=\dot{\omega}_{s}=\phi=0 and θ = 90° into Equations 10.152 gives

A \dot{\omega}_{x}+C^{(w)} \omega_{s} \dot{\theta} \cos \phi \cos \theta-C^{(w)} \omega_{s} \dot{\phi} \sin \phi \sin \theta+C^{(w)} \dot{\omega}_{s} \cos \phi \sin \theta +\left(C^{(w)} \omega_{s} \cos \theta+C \omega_{z}\right) \omega_{y}-\left(C^{(w)} \omega_{s} \sin \phi \sin \theta+B \omega_{y}\right) \omega_{z}=M_{G_{x}}                    (10.152a)

B \dot{\omega}_{y}+C^{(w)} \omega_{s} \dot{\theta} \sin \phi \cos \theta+C^{(w)} \omega_{s} \dot{\phi} \cos \phi \sin \theta+C^{(w)} \dot{\omega}_{s} \sin \phi \sin \theta -\left(C^{(w)} \omega_{s} \cos \theta+C \omega_{z}\right) \omega_{x}+\left(C^{(w)} \omega_{s} \cos \phi \sin \theta+A \omega_{x}\right) \omega_{z}=M_{G_{y}}                    (10.152b)

C \dot{\omega}_{z}-C^{(w)} \omega_{s} \dot{\theta} \sin \theta+C^{(w)} \dot{\omega}_{s} \cos \theta -\left(C^{(w)} \omega_{s} \cos \phi \sin \theta+A \omega_{x}\right) \omega_{y}+\left(C^{(w)} \omega_{s} \sin \phi \sin \theta+B \omega_{y}\right) \omega_{x}=M_{G_{z}}                    (10.152c)

A \dot{\omega}_{x}=0
B \dot{\omega}_{y}+C^{(w)} \omega_{s}\left(\omega_{z}+\dot{\phi}\right)=0
C \dot{\omega}_{z}-C^{(w)} \omega_{S} \dot{\theta}=0

Thus, the components of vehicle angular acceleration are

\dot{\omega}_{x}=0 \quad \dot{\omega}_{y}=-\frac{C^{(w)}}{B} \omega_{s}\left(\omega_{z}+\dot{\phi}\right) \quad \dot{\omega}_{z}=\frac{C^{(w)}}{C} \omega_{s} \dot{\theta}

We see that pitching the gyro at the rate \dot{\theta} around the vehicle y axis alters only \omega_{z}, leaving \omega_{x} unchanged. However, to keep \omega_{y}=0 clearly requires \dot{\phi}=-\omega_{z}. In other words, for the control moment gyro to control the angular velocity about only one vehicle axis, it must therefore be able to precess around that axis (the z axis in this case). That is why the control moment gyro must have two gimbals.

Related Answered Questions