Question 11.5: Repeat Example 11.4 for the restricted three-stage launch ve...

Repeat Example 11.4 for the restricted three-stage launch vehicle.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equation 11.56 gives the burnout velocity for three stages,

v_{b o 3-\text { stage }}=3 I_{s p} g_{o} \ln n_{3-\text { stage }}=I_{s p} g_{o} \ln \left\lgroup \frac{1}{\pi_{P L}^{1 / 3}(1-\varepsilon)+\varepsilon} \right\rgroup ^{3}                (11.56)

v_{b o}=350 \cdot 0.00981 \cdot \ln \left\lgroup \frac{1}{0.05^{1 / 3}(1-0.15)+0.15} \right\rgroup ^{3}=7.928 km / s

Substituting m_{P L}=10,000 kg , \pi_{ PL }=0.05 \text { and } \varepsilon=0.15 into Equations 11.57 and 11.58 yields

m_{E 1}=\frac{\left(1-\pi_{P L}^{1 / 3}\right) \varepsilon}{\pi_{P L}} m_{P L} \quad m_{E 2}=\frac{\left(1-\pi_{P L}^{1 / 3}\right) \varepsilon}{\pi_{P L}^{2 / 3}} m_{P L} \quad m_{E 3}=\frac{\left(1-\pi_{P L}^{1 / 3}\right) \varepsilon}{\pi_{P L}^{1 / 3}} m_{P L}                  (11.57)

\begin{aligned}m_{p 1} &=\frac{\left(1-\pi_{P L}^{1 / 3}\right)(1-\varepsilon)}{\pi_{P L}} m_{P L} \\m_{p 2} &=\frac{\left(1-\pi_{P L}^{1 / 3}\right)(1-\varepsilon)}{\pi_{P L}^{2 / 3}} m_{P L} \\m_{p 3} &=\frac{\left(1-\pi_{P L}^{1 / 3}\right)(1-\varepsilon)}{\pi_{P L}^{1 / 3}} m_{P L}\end{aligned}                  (11.58)

m_{E 1}=18,948 kg \quad m_{E 2}=6980 kg \quad m_{E 3}=2572 kg
m_{p 1}=107,370 kg \quad m_{p 2}=39,556 kg \quad m_{p 3}=14,573 kg

Again, the total empty mass and total propellant mass are the same as for the single and two-stage vehicles. Notice that the velocity increase over the two-stage rocket is just 7%, which is much less than the advantage the two-stage had over the single stage vehicle.

Related Answered Questions