Question 11.7: Find the optimal mass for a three-stage launch vehicle that ...

Find the optimal mass for a three-stage launch vehicle that is required to lift a 5000 kg payload to a speed of 10 km/s. For each stage, we are given that

Stage 1            I_{s p 1}=400 s \left(c_{1}=3.924 km / s \right) \quad \varepsilon_{1}=0.10

Stage 2            I_{s p 2}=350 s \left(c_{2}=3.434 km / s \right) \quad \varepsilon_{2}=0.15

Stage 3            I_{s p 3}=300 s \left(c_{3}=2.943 km / s \right) \quad \varepsilon_{3}=0.20

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Substituting this data into Equation 11.86, we get

\sum\limits_{i=1}^{N} c_{i} \ln \left(c_{i} \eta-1\right)-\ln \eta \sum\limits_{i=1}^{N} c_{i}-\sum\limits_{i=1}^{N} c_{i} \ln c_{i} \varepsilon_{i}=v_{b o}              (11.86)

3.924 ln (3.924 η – 1) + 3.434 ln (3.434 η – 1) + 2.943 ln (2.943 η – 1) – 10.30 ln η + 7.5089 = 10

As can be checked by substitution, the iterative solution of this equation is
η = 0.4668

Substituting η into Equations 11.87 yields the optimum mass ratios,

n_{i}=\frac{c_{i} \eta-1}{c_{i} \varepsilon_{i} \eta}, i=1,2, \ldots, N                (11.87)

n_{1}=4.541 \quad n_{2}=2.507 \quad n_{3}=1.361

For the step masses, we appeal to Equations 11.88 to obtain

\begin{aligned}&m_{N}=\frac{n_{N}-1}{1-n_{N} \varepsilon_{N}} m_{P L} \\&m_{N-1}=\frac{n_{N-1}-1}{1-n_{N-1} \varepsilon_{N-1}}\left(m_{N}+m_{P L}\right) \\&m_{N-2}=\frac{n_{N-2}-1}{1-n_{N-2} \varepsilon_{N-2}}\left(m_{N-1}+m_{N}+m_{P L}\right) \\&\vdots \\&m_{1}=\frac{n_{1}-1}{1-n_{1} \varepsilon_{1}}\left(m_{2}+m_{3}+\ldots m_{P L}\right)\end{aligned}                    (11.88)

m_{1}=165,700 kg \quad m_{2}=18,070 kg \quad m_{3}=2477 kg

The total mass of the vehicle is

m_{o}=m_{1}+m_{2}+m_{3}+m_{P L}=191,200 kg

Using Equations 11.89 and 11.90, the empty masses and propellant masses are found to be

m_{E i}=\varepsilon_{i} m_{i}                     (11.89)

m_{p i}=m_{i}-m_{E i}                 (11.90)

m_{E 1}=16,570 kg \quad m_{E 2}=2710 k \quad m_{E 3}=495.4 kg
m_{p 1}=149,100 kg \quad m_{p 2}=15,360 kg \quad m_{p 3}=1982 kg

The payload ratios for each stage are

\lambda_{1}=\frac{m_{2}+m_{3}+m_{P L}}{m_{1}}=0.1542
\lambda_{2}=\frac{m_{3}+m_{P L}}{m_{2}}=0.4139
\lambda_{3}=\frac{m_{P L}}{m_{3}}=2.018

The overall payload fraction is

\pi_{ PL }=\frac{m_{P L}}{m_{o}}=\frac{5000}{191,200}=0.0262

Finally, let us check Equation 11.93,

\eta c_{i}\left(\varepsilon_{i} n_{i}-1\right)^{2}+2 \varepsilon_{i} n_{i}-1>0, \quad i=1, \ldots, N                (11.93)

\eta c_{1}\left(\varepsilon_{1} n_{1}-1\right)^{2}+2 \varepsilon_{1} n_{1}-1=0.4541
\eta c_{2}\left(\varepsilon_{2} n_{2}-1\right)^{2}+2 \varepsilon_{2} n_{2}-1=0.3761
\eta c_{3}\left(\varepsilon_{3} n_{3}-1\right)^{2}+2 \varepsilon_{3} n_{3}-1=0.2721

A positive number in every instance means we have indeed found a local minimum of the function in Equation 11.85.

h=\sum\limits_{i=1}^{N}\left[\ln \left(1-\varepsilon_{i}\right)+\ln n_{i}-\ln \left(1-\varepsilon_{i} n_{i}\right)\right]-\eta\left\lgroup v_{b o}-\sum\limits_{i=1}^{N} c_{i} \ln n_{i} \right\rgroup                   (11.85)

Related Answered Questions

Question: 11.5

Verified Answer:

Equation 11.56 gives the burnout velocity for thre...