Question 7.S-P.7: Using a 60° rosette, the following strains have been determi...

Using a 60° rosette, the following strains have been determined at point Q on the surface of a steel machine base:

\epsilon_{1}= 40 m            \epsilon_{2} = 980 m          \epsilon_{3} = 330 m

Using the coordinate axes shown, determine at point Q, (a) the strain components \epsilon_{x}, \epsilon_{y} , and g_{xy}, (b) the principal strains, (c) the maximum shearing strain.

(Use n = 0.29.)

7.7
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. Strain Components \epsilon_{x}, \epsilon_{y} , g_{xy}.    For the coordinate axes shown

u _{1}=0            u _{2}=60^{\circ}              u _{3}=120^{\circ}

Substituting these values into Eqs. (7.60), we have

\epsilon_{1}=\epsilon_{x} \cos ^{2} u _{1}+\epsilon_{y} \sin ^{2} u _{1}+ g _{x y} \sin u _{1} \cos u _{1}

 

\epsilon_{2}=\epsilon_{x} \cos ^{2} u _{2}+\epsilon_{y} \sin ^{2} u _{2}+ g _{x y} \sin u _{2} \cos u _{2}

 

\epsilon_{3}=\epsilon_{x} \cos ^{2} u _{3}+\epsilon_{y} \sin ^{2} u _{3}+ g _{x y} \sin u _{3} \cos u _{3}                                (7.60)

 

\epsilon_{1}=\epsilon_{x}(1) \quad+\epsilon_{y}(0) \quad+ g _{x y}(0)(1)

 

\epsilon _{2}= \epsilon _{x}(0.500)^{2}+\epsilon_{y}(0.866)^{2}+ g _{x y}(0.866)(0.500)

 

\epsilon _{3}= \epsilon _{x}(-0.500)^{2}+ \epsilon _{y}(0.866)^{2}+ g _{x y}(0.866)(-0.500)

 

Solving these equations for \epsilon_{x}, \epsilon_{y} , and g_{xy}, we obtain

\epsilon_{x}=\epsilon_{1}                      \epsilon_{y}=\frac{1}{3}\left(2 \epsilon_{2}+2 \epsilon_{3}-\epsilon_{1}\right)                      g_{xy}=\frac{\epsilon_{2}-\epsilon_{3}}{0.866}

Substituting the given values for \epsilon_{1}, \epsilon_{2}, and \epsilon_{3}, we have

\epsilon_{x}=40 m                  \epsilon _{y}=\frac{1}{3}[2(980)+2(330)-40]                      \epsilon_{y}=+860 m

 

g _{x y}=(980-330) / 0.866                          g _{x y}=750 m

These strains are indicated on the element shown.

b. Principal Strains.     We note that the side of the element associated with \epsilon_{x} rotates counterclockwise; thus, we plot point X below the horizontal axis, i.e., X(40, -375) . We then plot Y(860, +375) and draw Mohr’s circle.

\epsilon _{\text {ave }}=\frac{1}{2}(860 m +40 m )=450 m

 

R=\sqrt{(375 m )^{2}+(410 m )^{2}}=556 m

 

\tan 2 u _{p}=\frac{375 m }{410 m }                  2 u _{p}=42.4^{\circ}\curvearrowright                     u_{p}=21.2^{\circ}\curvearrowright

Points A and B correspond to the principal strains. We have

\epsilon_{a}=\epsilon_{\text {ave }}-R=450 m -556 m                    \epsilon_{a}=-106 m

 

\epsilon_{b}=\epsilon_{\text {ave }}+R=450 m +556 m                \epsilon _{b}=+1006 m

Since s _{z}=0 on the surface, we use Eq.(7.59) to find the principal strain \epsilon_{c}:

\epsilon_{c}=-\frac{ n }{1- n }\left(\epsilon_{a}+\epsilon_{b}\right)                                (7.59)

 

\epsilon _{c}=-\frac{ n }{1- n }\left(\epsilon_{a}+\epsilon_{b}\right)=-\frac{0.29}{1-0.29}(-106 m +1006 m )                            \epsilon_{c}=-368 m

c. Maximum Shearing Strain.     Plotting point C and drawing Mohr’s circle through points B and C, we obtain point D^{\prime} and write

\frac{1}{2} g _{\max }=\frac{1}{2}(1006 m +368 m )                  g _{\max }=1374 m

7.77
7.78

Related Answered Questions