Question 8.S-P.3: The solid shaft AB rotates at 480 rpm and transmits 30 kW fr...

The solid shaft AB rotates at 480 rpm and transmits 30 kW from the motor M to machine tools connected to gears G and H; 20 kW is taken off at gear G and 10 kW at gear H. Knowing that t_{all} = 50 MPa, determine the smallest permissible diameter for shaft AB.

8.3
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Torques Exerted on Gears.     Observing that f = 480 rpm = 8 Hz, we determine the torque exerted on gear E:

T_{E}=\frac{P}{2 p f}=\frac{30 kW }{2 p (8 Hz )}=597 N \cdot m

 

The corresponding tangential force acting on the gear is

F_{E}=\frac{T_{E}}{r_{E}}=\frac{597 N \cdot m }{0.16 m }=3.73 kN

 

A similar analysis of gears C and D yields

T_{C}=\frac{20 kW }{2 p (8 Hz )}=398 N \cdot m                    F_{C}=6.63 kN

 

T_{D}=\frac{10 kW }{2 p (8 Hz )}=199 N \cdot m                      F_{D}=2.49 kN

We now replace the forces on the gears by equivalent force-couple systems.

Bending-Moment and Torque Diagrams

Critical Transverse Section.     By computing \sqrt{M_{y}^{2}+M_{z}^{2}+T^{2}} at all potentially critical sections, we find that its maximum value occurs just to the right of D:

\sqrt{M_{y}^{2}+M_{z}^{2}+T^{2}}{ }_{\max }=\sqrt{(1160)^{2}+(373)^{2}+(597)^{2}}=1357 N \cdot m

 

Diameter of Shaft.     For t _{\text {all }}=50 MPa, Eq. (7.32) yields

s_{1}=2 s _{2}                              (7.32)

 

\frac{J}{c}=\frac{\sqrt{M_{y}^{2}+M_{z}^{2}+T^{2}}_{\max }}{ t _{ all }}=\frac{1357 N \cdot m }{50 MPa }=27.14 \times 10^{-6} m ^{3}

 

For a solid circular shaft of radius c, we have

\frac{J}{c}=\frac{ p }{2} c^{3}=27.14 \times 10^{-6}                    c = 0.02585 m = 25.85 mm

Diameter = 2c = 51.7 mm

830
831
832

Related Answered Questions