Question 11.8: A block of mass m moving with a velocity v0 hits squarely th...
A block of mass m moving with a velocity v_0 hits squarely the prismatic member AB at its midpoint C (Fig. 11.31). Determine (a) the equivalent static load P_m, (b) the maximum stress s_m in the member, and (c) the maximum deflection x_m at point C.

Learn more on how we answer questions.
(a) Equivalent Static Load. The maximum strain energy of the member is equal to the kinetic energy of the block before impact. We have
U_{m}=\frac{1}{2} m v_{0}^{2} (11.50)
On the other hand, expressing U_m as the work of the equivalent horizontal static load as it is slowly applied at the midpoint C of the member, we write
U_{m}=\frac{1}{2} P_{m} x_{m} (11.51)
where x_m is the deflection of C corresponding to the static load P_m. From the table of Beam Deflections and Slopes of Appendix D, we find that
x_{m}=\frac{P_{m} L^{3}}{48 E I} (11.52)
Beam Deflections and Slopes | ||||
Beam and Loading | Elastic Curve | Maximum Deflection | Slope at End | Equation of Elastic Curve |
![]() |
![]() |
-\frac{P L^{3}}{3 E I} | -\frac{P L^{2}}{2 E I} | y=\frac{P}{6 EI}\left(x^{3}-3 L x^{2}\right) |
![]() |
![]() |
-\frac{w L^{4}}{8 E I} | -\frac{w L^{3}}{6 E I} | y=-\frac{w}{24 E I}\left(x^{4}-4 L x^{3}+6 L^{2} x^{2}\right) |
![]() |
![]() |
-\frac{M L^{2}}{2 E I} | -\frac{M L}{E I} | y=-\frac{M}{2 E I} x^{2} |
![]() |
![]() |
-\frac{P L^{3}}{48 E I} | \pm \frac{P L^{2}}{16 E I} | For x \leq \frac{1}{2} L :
y=\frac{P}{48 E I}\left(4 x^{3}-3 L^{2} x\right) |
![]() |
![]() |
For a > b:
-\frac{P b\left(L^{2}-b^{2}\right)^{3 / 2}}{9 \sqrt{3} E I L} at x_{m}=\sqrt{\frac{L^{2}-b^{2}}{3}} |
u _{A}=-\frac{P b\left(L^{2}-b^{2}\right)}{6 E I L}
u_{B}=+\frac{P a\left(L^{2}-a^{2}\right)}{6 E I L} |
For x < a:
y=\frac{P b}{6 E I L}\left[x^{3}-\left(L^{2}-b^{2}\right) x\right] For x = a: y=-\frac{P a^{2} b^{2}}{3 E I L} |
![]() |
![]() |
-\frac{5 w L^{4}}{384 E I} | \pm \frac{w L^{3}}{24 E I} | y=-\frac{w}{24 E I}\left(x^{4}-2 L x^{3}+L^{3} x\right) |
![]() |
![]() |
\frac{M L^{2}}{9 \sqrt{3} E I} | u _{A}=+\frac{M L}{6 E I}
u _{B}=-\frac{M L}{3 E I} |
y=-\frac{M}{6 E I L}\left(x^{3}-L^{2} x\right) |
Substituting for x_m from (11.52) into (11.51), we write
U_{m}=\frac{1}{2} \frac{P_{m}^{2} L^{3}}{48 E I}Solving for P_m and recalling Eq. (11.50), we find that the static load equivalent to the given impact loading is
P_{m}=\sqrt{\frac{96 U_{m} E I}{L^{3}}}=\sqrt{\frac{48 m v_{0}^{2} E I}{L^{3}}} (11.53)
(b) Maximum Stress. Drawing the free-body diagram of the member (Fig. 11.32), we find that the maximum value of the bending moment occurs at C and is M_{\max }=P_{m} L / 4. The maximum stress, therefore, occurs in a transverse section through C and is equal to
s _{m}=\frac{M_{\max } c}{I}=\frac{P_{m} L c}{4 I}Substituting for P_m from (11.53), we write
s_{m}=\sqrt{\frac{3 m v_{0}^{2} E I}{L(I / c)^{2}}}(c) Maximum Deflection. Substituting into Eq. (11.52) the expression obtained for P_m in (11.53), we have
x_{m}=\frac{L^{3}}{48 E I} \sqrt{\frac{48 m v_{0}^{2} E I}{L^{3}}}=\sqrt{\frac{m v_{0}^{2} L^{3}}{48 E I}}