Question 9.S-P.9: For the beam and loading shown, determine the reaction at th...

For the beam and loading shown, determine the reaction at the fixed support C.

التقاط
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Principle of Superposition.     Assuming the axial force in the beam to be zero, the beam ABC is indeterminate to the second degree and we choose two reaction components as redundant, namely, the vertical force R_C and the couple M_C. The deformations caused by the given load P, the force R_C, and the couple M_C will be considered separately as shown.

For each load, the slope and deflection at point C will be found by using the table of Beam Deflections and Slopes in Appendix D.

Beam Deflections and Slopes
Beam and Loading Elastic Curve Maximum Deflection Slope at End Equation of Elastic Curve
-\frac{P L^{3}}{3 E I} -\frac{P L^{2}}{2 E I} y=\frac{P}{6 EI}\left(x^{3}-3 L x^{2}\right)
-\frac{w L^{4}}{8 E I} -\frac{w L^{3}}{6 E I} y=-\frac{w}{24 E I}\left(x^{4}-4 L x^{3}+6 L^{2} x^{2}\right)
-\frac{M L^{2}}{2 E I} -\frac{M L}{E I} y=-\frac{M}{2 E I} x^{2}
-\frac{P L^{3}}{48 E I} \pm \frac{P L^{2}}{16 E I} For x \leq \frac{1}{2} L :

y=\frac{P}{48 E I}\left(4 x^{3}-3 L^{2} x\right)

For a > b:

-\frac{P b\left(L^{2}-b^{2}\right)^{3 / 2}}{9 \sqrt{3} E I L}

at x_{m}=\sqrt{\frac{L^{2}-b^{2}}{3}}

u _{A}=-\frac{P b\left(L^{2}-b^{2}\right)}{6 E I L}

 

u_{B}=+\frac{P a\left(L^{2}-a^{2}\right)}{6 E I L}

For x < a:

y=\frac{P b}{6 E I L}\left[x^{3}-\left(L^{2}-b^{2}\right) x\right]

For x = a: y=-\frac{P a^{2} b^{2}}{3 E I L}

-\frac{5 w L^{4}}{384 E I} \pm \frac{w L^{3}}{24 E I} y=-\frac{w}{24 E I}\left(x^{4}-2 L x^{3}+L^{3} x\right)
\frac{M L^{2}}{9 \sqrt{3} E I} u _{A}=+\frac{M L}{6 E I}

 

u _{B}=-\frac{M L}{3 E I}

y=-\frac{M}{6 E I L}\left(x^{3}-L^{2} x\right)

Load P.   We note that, for this loading, portion BC of the beam is straight.

\left( u _{C}\right)_{P}=\left( u _{B}\right)_{P}=-\frac{P a^{2}}{2 E I}

 

\begin{aligned}\left(y_{C}\right)_{P}&=\left(y_{B}\right)_{P}+\left( u _{B}\right)_{p} b \\&=-\frac{P a^{3}}{3 E I}-\frac{P a^{2}}{2 E I} b=-\frac{P a^{2}}{6 E I}(2 a+3 b)\end{aligned}

 

Force R_C                          \left( u_{C}\right)_{R}=+\frac{R_{C} L^{2}}{2 E I}                      \left(y_{C}\right)_{R}=+\frac{R_{C} L^{3}}{3 E I}

 

Couple M_{C}                    \left( u _{C}\right)_{M}=+\frac{M_{C} L}{E I}                        \left(y_{C}\right)_{M}=+\frac{M_{C} L^{2}}{2 E I}

Boundary Conditions.     At end C the slope and deflection must be zero:

[x = L, u_C = 0] :                    u_C = (u_C)_P + (u_C)_R + (u_C)_M

 

0 = -\frac{Pa^2}{2EI} + \frac{R_CL^2}{2EI} + \frac{M_CL}{EI}                        (1)

 

[x = L, y_C = 0] :                   y_C = (y_C)_P + (y_C)_R + (y_C)_M

 

0 = -\frac{Pa^2}{6EI} (2a + 3b) + \frac{R_CL^3}{3EI} + \frac{M_CL^2}{2EI}                           (2)

Reaction Components at C.     Solving simultaneously Eqs. (1) and (2), we find after reductions

R_C  = +\frac{Pa^2}{L^3}(a + 3b)                             R_C = \frac{Pa^2}{L^3}(a + 3b)↑

 

M_C = – \frac{Pa^2b}{L^2}                             M_C = \frac{Pa^2b}{L^2} \curvearrowright

Using the methods of statics, we can now determine the reaction at A.

9.9
9.91

Related Answered Questions

Question: 9.S-P.7

Verified Answer:

Principle of Superposition.     The given loading ...
Question: 9.13

Verified Answer:

Determination of Point K Where Slope Is Zero. We r...
Question: 9.S-P.8

Verified Answer:

Principle of Superposition.     The reaction [late...
Question: 9.14

Verified Answer:

We consider the couple exerted at the fixed end A ...
Question: 9.10

Verified Answer:

We replace the given loading by the two equivalent...