Question 9.S-P.12: For the beam and loading shown, (a) determine the deflection...

For the beam and loading shown, (a) determine the deflection at end A, (b) evaluate y_A for the following data:

W10 × 33: I = 170 in^4                            E = 29 × 10^6 psi

a = 3 ft = 36 in.                                           L = 5.5 ft = 66 in.

w = 13.5 kips/ft = 1125 lb/in.

9.12
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(M/EI) Diagram.     We first draw the bending-moment diagram. Since the flexural rigidity EI is constant, we obtain the (M/EI) diagram shown, which consists of a parabolic spandrel of area A_1 and a triangle of area A_2.

A_{1}=\frac{1}{3}\left(-\frac{w a^{2}}{2 E I}\right) a=-\frac{w a^{3}}{6 E I}

 

A_{2}=\frac{1}{2}\left(-\frac{w a^{2}}{2 E I}\right) L=-\frac{w a^{2} L}{4 E I}

 

Reference Tangent at B.     The reference tangent is drawn at point B as shown. Using the second moment-area theorem, we determine the tangential deviation of C with respect to B:

t_{C / B}=A_{2} \frac{2 L}{3}=\left(-\frac{w a^{2} L}{4 E I}\right) \frac{2 L}{3}=-\frac{w a^{2} L^{2}}{6 E I}

 

From the similar triangles A^{\prime \prime} A^{\prime} B and C C^{\prime} B, we find

A^{\prime \prime} A^{\prime}=t_{C / B}\left(\frac{a}{L}\right)=-\frac{w a^{2} L^{2}}{6 E I}\left(\frac{a}{L}\right)=-\frac{w a^{3} L}{6 E I}

 

Again using the second moment-area theorem, we write

t_{A / B}=A_{1} \frac{3 a}{4}=\left(-\frac{w a^{3}}{6 E I}\right) \frac{3 a}{4}=-\frac{w a^{4}}{8 E I}

 

a. Deflection at End A

y_{A}=A^{\prime \prime} A^{\prime}+t_{A / B}=-\frac{w a^{3} L}{6 E I}-\frac{w a^{4}}{8 E I}=-\frac{w a^{4}}{8 E I}\left(\frac{4}{3} \frac{L}{a}+1\right)

 

y_{A}=\frac{w a^{4}}{8 E I}\left(1+\frac{4}{3} \frac{L}{a}\right) \downarrow

 

b. Evaluation of y_{A}.    Substituting the data given, we write

y_{A}=\frac{(1125 lb / in .)(36 in .)^{4}}{8\left(29 \times 10^{6} lb / in ^{2}\right)\left(170 in ^{4}\right)}\left(1+\frac{4}{3} \frac{66 in .}{36 in .}\right)

 

y_{A}=0.1650 in . \downarrow
2.121

Related Answered Questions

Question: 9.S-P.7

Verified Answer:

Principle of Superposition.     The given loading ...
Question: 9.13

Verified Answer:

Determination of Point K Where Slope Is Zero. We r...
Question: 9.S-P.8

Verified Answer:

Principle of Superposition.     The reaction [late...
Question: 9.S-P.9

Verified Answer:

Principle of Superposition.     Assuming the axial...
Question: 9.14

Verified Answer:

We consider the couple exerted at the fixed end A ...
Question: 9.10

Verified Answer:

We replace the given loading by the two equivalent...