Question 11.S-P.7: For the uniform beam and loading shown, determine the reacti...

For the uniform beam and loading shown, determine the reactions at the supports.

11.7
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Castigliano’s Theorem.     The beam is indeterminate to the first degree and we choose the reaction R_A as redundant. Using Castigliano’s theorem, we determine the deflection at A due to the combined action of R_A and the distributed load. Since EI is constant, we write

y_{A}=\int \frac{M}{E I}\left(\frac{\partial M}{\partial R_{A}}\right) d x=\frac{1}{E I} \int M \frac{\partial M}{\partial R_{A}} d x                                  (1)

The integration will be performed separately for portions AB and BC of the beam. Finally, R_A is obtained by setting y_A equal to zero.

Free Body: Entire Beam.     We express the reactions at B and C in terms of R_A and the distributed load

R_{B}=\frac{9}{4} w L-3 R_{A}                        R_{C}=2 R_{A}-\frac{3}{4} w L                              (2)

Portion AB of Beam.     Using the free-body diagram shown, we find

M_{1}=R_{A} x-\frac{w x^{2}}{2}                  \frac{\partial M_{1}}{\partial R_{A}}=x

Substituting into Eq. (1) and integrating from A to B, we have

\frac{1}{E I} \int M_{1} \frac{\partial M}{\partial R_{A}} d x=\frac{1}{E I} \int_{0}^{L}\left(R_{A} x^{2}-\frac{w x^{3}}{2}\right) d x=\frac{1}{E I}\left(\frac{R_{A} L^{3}}{3}-\frac{w L^{4}}{8}\right)                         (3)

Portion BC of Beam.     We have

M_{2}=\left(2 R_{A}-\frac{3}{4} w L\right) v-\frac{w v^{2}}{2}                              \frac{\partial M_{2}}{\partial R_{A}}=2 v

Substituting into Eq. (1) and integrating from C, where v = 0 , to B, where v=\frac{1}{2} L, we have

\frac{1}{E I} \int M_{2} \frac{\partial M_{2}}{\partial R_{A}} d v=\frac{1}{E I} \int_{0}^{L / 2}\left(4 R_{A} v^{2}-\frac{3}{2} w L v^{2}-w v^{3}\right) d v

 

=\frac{1}{E I}\left(\frac{R_{A} L^{3}}{6}-\frac{w L^{4}}{16}-\frac{w L^{4}}{64}\right)=\frac{1}{E I}\left(\frac{R_{A} L^{3}}{6}-\frac{5 w L^{4}}{64}\right)                       (4)

Reaction at A.     Adding the expressions obtained in (3) and (4), we determine y_{A} and set it equal to zero

y_{A}=\frac{1}{E I}\left(\frac{R_{A} L^{3}}{3}-\frac{w L^{4}}{8}\right)+\frac{1}{E I}\left(\frac{R_{A} L^{3}}{6}-\frac{5 w L^{4}}{64}\right)=0

Solving for R_A,                      R_{A}=\frac{13}{32} w L                              R_{A}=\frac{13}{32} w L \uparrow

Reactions at B and C.     Substituting for R_{A} into Eqs. (2), we obtain

R_{B}=\frac{33}{32} w L \uparrow                        R_{C}=\frac{w L}{16} \uparrow

11.71
11.72

Related Answered Questions

Question: 11.S-P.6

Verified Answer:

Castigliano’s Theorem.     Since the given loading...
Question: 11.S-P.5

Verified Answer:

Castigliano’s Theorem.     Since no vertical load ...
Question: 11.15

Verified Answer:

The beam is statically indeterminate to the first ...
Question: 11.13

Verified Answer:

Deflection at A. We apply a dummy downward load [l...