Question 19.9: The torque capacity, T, for a multiple disc clutch can be ca...

The torque capacity, T, for a multiple disc clutch can be calculated using the relationship

T=\frac{2}{3} \mu F_{a} N\left(\frac{r_{o}^{3}-r_{i}^{3}}{r_{o}^{2}-r_{i}^{2}}\right)

where µ is the coefficient of friction, F_a is the axial clamping force, N is the number of disc faces, r_o is the outer radius of clutch ring, and r_i is the inner radius of clutch ring.

Determine the sure-fit and basic normal probable limits for the torque capacity if

\mu=0.3 \pm 0.03,

 

F_{a}=4000 \pm 200 N ,

N = 12,

r_{o}=60 \pm 0.5 mm

 

r_{i}=30 \pm 0.5 mm.

Which design parameter should be reduced to create a maximum reduction in the variability of the torque capacity?

 

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
T_{a v}=\frac{2}{3} \times 0.3 \times 4000 \times 12 \times\left(\frac{0.06^{3}-0.03^{3}}{0.06^{2}-0.03^{2}}\right)=672 N m

For sure-fit variability,

\delta y \approx \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} \delta x_{j}

 

\Delta T_{\text {sure-fit }} \approx\left|\frac{\partial T}{\partial F_{a}}\right| \Delta F_{a}+\left|\frac{\partial T}{\partial \mu}\right| \Delta \mu+\left|\frac{\partial T}{\partial r_{o}}\right| \Delta r_{o}+\left|\frac{\partial T}{\partial r_{i}}\right| \Delta r_{i}

 

\frac{\partial T}{\partial F_{a}}=\frac{2}{3} \mu N \frac{r_{o}^{3}-r_{i}^{3}}{r_{o}^{2}-r_{i}^{2}}=\frac{2}{3} \times 0.3 \times 12 \times \frac{0.06^{3}-0.03^{3}}{0.06^{2}-0.03^{2}}=0.168

 

\frac{\partial T}{\partial \mu}=\frac{2}{3} F_{a} N \frac{r_{o}^{3}-r_{i}^{3}}{r_{o}^{2}-r_{i}^{2}}=\frac{2}{3} \times 4000 \times 12 \times \frac{0.06^{3}-0.03^{3}}{0.06^{2}-0.03^{2}}=2240

Quotient rule, \left(\frac{u}{v}\right)^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}.

 

\frac{\partial T}{\partial r_{o}}=\frac{2}{3} \mu F_{a} N \frac{\left(r_{o}^{2}-r_{i}^{2}\right) 3 r_{o}^{2}-\left(r_{o}^{3}-r_{i}^{3}\right) 2 r_{o}}{\left(r_{o}^{2}-r_{i}^{2}\right)^{2}}

 

=\frac{2}{3} \times 0.3 \times 4000 \times 12 \times \frac{2.7 \times 10^{-3} \times 3 \times 0.06^{2}-1.89 \times 10^{-4} \times 2 \times 0.06}{\left(0.06^{2}-0.03^{2}\right)^{2}}

= 0.8889 × 9600 = 8533

\frac{\partial T}{\partial r_{i}}=\frac{2}{3} \mu F_{a} N \frac{-\left(r_{o}^{2}-r_{i}^{2}\right) 3 r_{i}^{2}+\left(r_{o}^{3}-r_{i}^{3}\right) 2 r_{i}}{\left(r_{o}^{2}-r_{i}^{2}\right)^{2}}

 

=\frac{2}{3} \times 0.3 \times 4000 \times 12 \times \frac{2.7 \times 10^{-3} \times 3 \times 0.03^{2}-1.89 \times 10^{-4} \times 2 \times 0.03}{\left(0.06^{2}-0.03^{2}\right)^{2}}

= 0.5556 × 9600 = 5333

\Delta F_{a}=2 \times 200=400 N

 

\Delta \mu=2 \times 0.3=0.6 N

 

\Delta r_{o}=2 \times 0.0005=0.001 m

 

\Delta r_{i}=2 \times 0.0005=0.001 m

 

\Delta T_{\text {sure-fit }}=(2240 \times 0.06)+(0.168 \times 400)+(0.8889 \times 0.001 \times 9600) +(0.5556 \times 0.001 \times 9600)
=134.4+67.2+8.533+5.333=215.5 N m

T_{\text {sure-fit }}=T_{a v} \pm\left(\frac{\Delta T_{\text {sure-fit }}}{2}\right)=672 \pm 108 N m

Basic normal probable limits are \sigma_{y}^{2} \approx \sum_{j=1}^{n}\left(\frac{\partial f}{\partial x_{j}}\right)^{2} \sigma_{x_{j}}^{2}.

Assuming natural tolerance limits,

\Delta T_{\text {basic normal }}^{2} \approx\left|\frac{\partial T}{\partial F_{a}}\right|^{2} \Delta F_{a}^{2}+\left|\frac{\partial T}{\partial \mu}\right|^{2} \Delta \mu^{2}+\left|\frac{\partial T}{\partial r_{o}}\right|^{2} \Delta r_{o}^{2}+\left|\frac{\partial T}{\partial r_{i}}\right|^{2} \Delta r_{i}^{2}

 

=134.4^{2}+67.2^{2}+8.533^{2}+5.333^{2}=22,680

 

\Delta T_{\text {basic normal }}=150.6 N m

 

T_{\text {basic normal }}=T_{a v} \pm\left(\frac{\Delta T_{\text {basic normal }}}{2}\right)=672 \pm 75 N m

The coefficient of friction contributes the most to the variability. This would require more stringent manufacture control.

Related Answered Questions

Question: 19.1

Verified Answer:

From Table 19.1, the ISO symbol is 35H11/c11 (the ...
Question: 19.2

Verified Answer:

From Table 19.1, the ISO symbol is 60H7/s6. Table ...