Question 9.2: Determine the equation of the deflection curve for a cantile...

Determine the equation of the deflection curve for a cantilever beam AB subjected to a uniform load of intensity q (Fig. 9-10a).

Also, determine the angle of rotation θ_{B} and the deflection δ_{B} at the free end (Fig. 9-10b). Note: The beam has length L and constant flexural rigidity EI.

9.2
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use a four-step problem-solving approach.
1. Conceptualize: The beam is statically determinate. Begin by finding reaction force R_{A} and reaction moment M_{A}. The left-hand free-body diagram in Fig. 9-11 is then used to obtain an expression for internal moment M(x).

Bending moment in the beam: The bending moment at distance x from the fixed support is obtained from the free-body diagram of Fig. 9-11. Note that the vertical reaction at the support is equal to qL and the moment reaction is equal to qL² / 2. Consequently, the expression for the bending moment M is

M=-\frac{q L^{2}}{2}+q L x-\frac{q x^{2}}{2}             (9-27)

2. Categorize: Use the expression for internal moment M(x) in the bending moment equation (Eq. 9-14a) to find expressions for slopes and deflections for this beam.

E I \frac{d^{2} v}{d x^{2}}=M             (9-14a)

Differential equation of the deflection curve: When the preceding expression for the bending moment is substituted into the differential equation (Eq. 9-16a), the following equation is obtained:

E I v^{\prime \prime}=M              (9-16a)

E I v^{\prime \prime}=-\frac{q L^{2}}{2}+q L x-\frac{q x^{2}}{2}           (9-28)

3. Analyze: Now integrate both sides of this equation to obtain the slopes and deflections.

Slope of the beam: The first integration of Eq. (9-28) gives the following equation for the slope:

E I v^{\prime}=-\frac{q L^{2} x}{2}+\frac{q L x^{2}}{2}-\frac{q x^{3}}{6}+C_{1}           (a)

The constant of integration C_{I} can be found from the boundary condition that the slope of the beam is zero at the support; which is expressed as

v^{\prime}(0)=0

When this condition is applied to Eq. (a), the result is C_{1} = 0. Therefore, Eq. (a) becomes

E I v^{\prime}=-\frac{q L^{2} x}{2}+\frac{q L x^{2}}{2}-\frac{q x^{3}}{6}             (b)

and the slope is

v^{\prime}=-\frac{q x}{6 E I}\left(3 L^{2}-3 L x+x^{2}\right)            (9-29)

As expected, the slope obtained from this equation is zero at the support (x = 0) and negative (i.e., clockwise) throughout the length of the beam.

Deflection of the beam: Integration of the slope equation [Eq. (b)] yields

E I v=-\frac{q L^{2} x^{2}}{4}+\frac{q L x^{3}}{6}-\frac{q x^{4}}{24}+C_{2}               (c)

The constant C_{2} is found from the boundary condition that the deflection of the beam is zero at the support:

v(0) = 0

When this condition is applied to Eq. (c), the result is C_{2} = 0. Therefore, the equation for the deflection v is

v=-\frac{q x^{2}}{24 E I}\left(6 L^{2}-4 L x+x^{2}\right)          (9-30)

As expected, the deflection obtained from this equation is zero at the support (x = 0) and negative (that is, downward) elsewhere.

Angle of rotation at the free end of the beam: The clockwise angle of rotation \theta_{B} at end B of the beam (Fig. 9-10b) is equal to the negative of the slope at that point. Thus, use Eq. (9-29) to get

\theta_{B}=-v^{\prime}(L)=\frac{q L^{3}}{6 E I}            (9-31)

This angle is the maximum angle of rotation for the beam.

Deflection at the free end of the beam: Since the deflection \delta_{B} is downward (Fig. 9-10b), it is equal to the negative of the deflection obtained from Eq. (9-30):

\delta_{B}=-v(L)=\frac{q L^{4}}{8 E I}            (9-32)

This deflection is the maximum deflection of the beam.
4. Finalize: Equations (9-29) to (9-32) are listed as Case 1 in Table H-1, Appendix H.

Table H-1
Deflections and Slopes of Cantilever Beams
Notation:
v = deflection in the y direction (positive upward)
v′ = dv/dx = slope of the deflection curve
\delta_{B}=-v(L)= deflection at end B of the beam (positive downward)
\theta_{B}=-v^{\prime}(L)= angle of rotation at end B of the beam (positive clockwise)
EI = constant

 

v=-\frac{q x^{2}}{24 E I}\left(6 L^{2}-4 L x+x^{2}\right)   \quad v^{\prime}=\frac{q x}{6 E I}\left(3 L^{2}-3 L x+x^{2}\right)
\delta_{B}=\frac{q L^{4}}{8 E I}   \quad \theta_{B}=\frac{q L^{3}}{6 E I}
v=-\frac{q x^{2}}{24 E I}\left(6 a^{2}-4 a x+x^{2}\right)   \quad(0 \leq x \leq a)
v^{\prime}=-\frac{q x}{6 E I}\left(3 a^{2}-3 a x+x^{2}\right)   \quad(0 \leq x \leq a)
v=-\frac{q a^{3}}{24 E I}(4 x-a) \quad v^{\prime}=-\frac{q a^{3}}{6 E I}   \quad(a \leq x \leq L)
At  x=a: v=-\frac{q a^{4}}{8 E I}   \quad v^{\prime}=-\frac{q a^{3}}{6 E I}
\delta_{B}=\frac{q a^{3}}{24 E I}(4 L-a)   \quad \theta_{B}=\frac{q a^{3}}{6 E I}
v=-\frac{q b x^{2}}{12 E I}(3 L+3 a-2 x)          (0 \leq x \leq a)
v^{\prime}=-\frac{q b x}{2 E I}(L+a-x)            (0 \leq x \leq a)
v=-\frac{q}{24 E I}\left(x^{4}-4 L x^{3}+6 L^{2} x^{2}-4 a^{3} x+a^{4}\right)   \quad(a \leq x \leq L)
v^{\prime}=-\frac{q}{6 E I}\left(x^{3}-3 L x^{2}+3 L^{2} x-a^{3}\right)  \quad(a \leq x \leq L)
At x=a:   v=-\frac{q a^{2} b}{12 E I}(3 L+a)  \quad v^{\prime}=-\frac{q a b L}{2 E I}
\delta_{B}=\frac{q}{24 E I}\left(3 L^{4}-4 a^{3} L+a^{4}\right)  \quad \theta_{B}=\frac{q}{6 E I}\left(L^{3}-a^{3}\right)
v=-\frac{P x^{2}}{6 E I}(3 L-x)  \quad v^{\prime}=-\frac{P x}{2 E I}(2 L-x)
\delta_{B}=\frac{P L^{3}}{3 E I}  \quad \theta_{B}=\frac{P L^{2}}{2 E I}
v=-\frac{P x^{2}}{6 E I}(3 a-x) \quad v^{\prime}=-\frac{P x}{2 E I}(2 a-x)  \quad(0 \leq x \leq a)
v=-\frac{P a^{2}}{6 E I}(3 x-a)  \quad v^{\prime}=-\frac{P a^{2}}{2 E I}  \quad(a \leq x \leq L)
At x=a:  \quad v=-\frac{P a^{3}}{3 E I}  \quad v^{\prime}=-\frac{P a^{2}}{2 E I}
\delta_{B}=\frac{P a^{2}}{6 E I}(3 L-a)  \quad \theta_{B}=\frac{P a^{2}}{2 E I}
v=-\frac{M_{0} x^{2}}{2 E I} \quad v^{\prime}=-\frac{M_{0} x}{E I}
\delta_{B}=\frac{M_{0} L^{2}}{2 E I}  \quad \theta_{B}=\frac{M_{0} L}{E I}
v=-\frac{M_{0} x^{2}}{2 E I}  \quad v^{\prime}=-\frac{M_{0} x}{E I} \quad(0 \leq x \leq a)
v=-\frac{M_{0} a}{2 E I}(2 x-a)  \quad v^{\prime}=-\frac{M_{0} a}{E I} \quad(a \leq x \leq L)
At x=a:  \quad v=-\frac{M_{0} a^{2}}{2 E I}  \quad v^{\prime}=-\frac{M_{0} a}{E I}
\delta_{B}=\frac{M_{0} a}{2 E I}(2 L-a)  \quad \theta_{B}=\frac{M_{0} a}{E I}
v=-\frac{q_{0} x^{2}}{120 L E I}\left(10 L^{3}-10 L^{2} x+5 L x^{2}-x^{3}\right)
v^{\prime}=-\frac{q_{0} x}{24 L E I}\left(4 L^{3}-6 L^{2} x+4 L x^{2}-x^{3}\right)
\delta_{B}=\frac{q_{0} L^{4}}{30 E I} \quad \theta_{B}=\frac{q_{0} L^{3}}{24 E I}
v=-\frac{q_{0} x^{2}}{120 L E I}\left(20 L^{3}-10 L^{2} x+x^{3}\right)
v^{\prime}=-\frac{q_{0} x}{24 L E I}\left(8 L^{3}-6 L^{2} x+x^{3}\right)
\delta_{B}=\frac{11 q_{0} L^{4}}{120 E I}  \quad \theta_{B}=\frac{q_{0} L^{3}}{8 E I}
v=-\frac{q_{0} L}{3 \pi^{4} E I}\left(48 L^{3} \cos \frac{\pi x}{2 L}-48 L^{3}+3 \pi^{3} L x^{2}-\pi^{3} x^{3}\right)
v^{\prime}=-\frac{q_{0} L}{\pi^{3} E I}\left(2 \pi^{2} L x-\pi^{2} x^{2}-8L^{2} \sin \frac{\pi x}{2 L}\right)
\delta_{B}=\frac{2 q_{0} L^{4}}{3 \pi^{4} E I}\left(\pi^{3}-24\right)   \quad\theta_{B}=\frac{q_{0} L^{3}}{\pi^{3} E I}\left(\pi^{2}-8\right)
9..2

Related Answered Questions