Question 15.S-P.4: For the beam and loading shown, determine the slope and defl...

For the beam and loading shown, determine the slope and deflection at point B.

15.4
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Principle of Superposition. The given loading can be obtained by superposing the loadings shown in the following “picture equation.” The beam AB is, of course, the same in each part of the figure.

For each of the loadings I and II, we now determine the slope and deflection at B by using the table of Beam Deflections and Slopes in App. C.

Loading I

(θ_{B})_{I} = -\frac{wL^{3}}{6EI}                                (y_{B})_{I} = -\frac{wL^{4}}{8EI}

Loading II

(θ_{C})_{II} = + \frac{w(L/2)^{3}}{6EI} = + \frac{wL^{3}}{48EI}                               (y_{C})_{II} = + \frac{w(L/2)^{4}}{8EI}= +\frac{wL^{4}}{128EI}

In portion CB, the bending moment for loading II is zero and thus the elastic curve is a straight line.

(θ_{B})_{II} =(θ_{C})_{II} = +\frac{wL^{3}}{48EI}                               (y_{B})_{II} = (y_{C})_{II} + (θ_{C})_{II} \left(\frac{L}{2}\right)

=\frac{wL^{4}}{128EI} + \frac{wL^{3}}{48EI} \left(\frac{L}{2}\right) = + \frac{7wL^{4}}{384EI}

Slope at Point B

θ_{B} = (θ_{B})_{I} + (θ_{B})_{II} = – \frac{wL^{3}}{6EI} + \frac{wL^{3}}{48EI}= – \frac{7wL^{3}}{48EI}                      θ_{B} = \frac{7wL^{3}}{48EI}⦪

Deflection at B

y_{B} = (y_{B})_{I} + (y_{B})_{II} = – \frac{wL^{4}}{8EI} + \frac{7wL^{4}}{384EI} =  – \frac{41wL^{4}}{384EI}                                    y_{B} =\frac{41wL^{4}}{384EI} ↓
15.4a
15.4b

Related Answered Questions

Question: 15.S-P.6

Verified Answer:

Principle of Superposition. Assuming the axial for...
Question: 15.S-P.5

Verified Answer:

Principle of Superposition. The reaction R_...
Question: 15.S-P.2

Verified Answer:

Differential Equation of the Elastic Curve. From E...
Question: 15.5

Verified Answer:

Equilibrium Equations. From the free-body diagram ...