Question 11.4: A column is to be designed to separate a mixture of ethylben...

A column is to be designed to separate a mixture of ethylbenzene and styrene. The feed will contain 0.5 mol fraction styrene, and a styrene purity of 99.5 per cent is required, with a recovery of 85 per cent. Estimate the number of equilibrium stages required at a reflux ratio of 8. Maximum column bottom pressure 0.20 bar.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Ethylbenzene is the more volatile component.

 

\text { Antoine equations, ethylbenzene, } \ln P^{\circ}=9.386-\frac{3279.47}{T-59.95}

 

\text { styrene } \ln P^{\circ}=9.386-\frac{3328.57}{T-63.72}

 

P bar, T Kelvin

Material balance, basis 100 kmol feed:

 

\text { at } 85 \text { per cent recovery, styrene in bottoms }=50 \times 0.85=42.5 kmol

 

\text { at } 99.5 \text { per cent purity, ethylbenzene in bottoms }=\frac{42.5}{99.5} \times 0.5=0.21 kmol

 

ethylbenzene in the tops = 50 – 0.21 = 49.79 kmol

styrene in tops = 50 – 42.5 = 7.5 kmol

 

\text { mol fraction ethylbenzene in tops }=\frac{49.79}{49.79+7.5}=0.87

 

z_{f}=0.5, x_{b}=0.005, x_{d}=0.87

 

Column bottom temperature, from Antoine equation for styrene

 

\ln 0.2=9.386-\frac{3328.57}{T-63.72}

 

T=366 K , 93.3^{\circ} C

 

At 93.3^{\circ} C, vapour pressure of ethylbenzene

 

\ln P^{\circ}=9.386-\frac{3279.47}{366.4-59.95}=0.27 bar

 

\text { Relative volatility }=\frac{P^{\circ} \text { ethylbenzene }}{P^{\circ} \text { styrene }}=\frac{0.27}{0.20}=1.35

 

The relative volatility will change as the compositions and (particularly for a vacuum column) the pressure changes up the column. The column pressures cannot be estimated until the number of stages is known; so as a first trial the relative volatility will be taken as constant, at the value determined by the bottom pressure.

Rectifying section

 

s=\frac{8}{8+1}=0.89 (11.35)

 

b=\frac{0.87}{8+1}=0.097 (11.36)

 

0.89(1.35-1) k^{2}+[0.89+0.097(1.35-1)-1.35] k+0.097=0 (11.29)

 

k = 0.290

 

x_{0}^{*}=0.87-0.29=0.58 (11.33)

 

x_{n}^{*}=0.50-0.29=0.21 (11.34)

 

c=1+(1.35-1) 0.29=1.10 (11.32)

 

\beta=\frac{0.89 \times 1.10(1.35-1)}{1.35-0.89 \times 1.1^{2}}=1.255 (11.31)

 

N=\log \left[\frac{0.58(1-1.255 \times 0.21)}{0.21(1-1.255 \times 0.58)}\right] / \log \left(\frac{1.35}{0.89 \times 1.1^{2}}\right) =\frac{\log 7.473}{\log 1.254}=8.87, \underline{\underline{\text { say } 9}} (11.30)

 

Stripping section, feed taken as at its bubble point

 

s=\frac{8 \times 0.5+0.87-(8+1) 0.005}{(8+1)(0.5-0.005)}=1.084 (11.39)

 

b=\frac{(0.5-0.87) 0.005}{(8+1)(0.5-0.005)}=-4.15 \times 10^{-4}(\text { essentially zero }) (11.40)

 

1.084(1.35-1) k^{2}+\left[1.084-4.15 \times 10^{-4}(1.35-1)-1.35\right] k-4.15 \times 10^{-4}

 

k = 0.702

 

x_{0}^{*}=0.5-0.702=-0.202 (11.37)

 

x_{n}^{*}=0.005-0.702=-0.697 (11.38)

 

c=1+(1.35-1) 0.702=1.246 (11.32)

 

\beta=\frac{1.084 \times 1.246(1.35-1)}{1.35-1.084 \times 1.246^{2}}=-1.42 (11.31)

 

N=\log \left[\frac{-0.202(1-0.697 \times 1.42)}{-0.697(1-0.202 \times 1.42)}\right] / \log \left(\frac{1.35}{1.084 \times 1.246^{2}}\right) =\frac{\log \left[4.17 \times 10^{-3}\right]}{\log 0.8}=24.6, \text { say } 25 (11.30)

Related Answered Questions