Question 11.5: Estimate the number of ideal stages needed in the butane-pen...

Estimate the number of ideal stages needed in the butane-pentane splitter defined by the compositions given in the table below. The column will operate at a pressure of 8.3 bar, with a reflux ratio of 2.5. The feed is at its boiling point.

Note: a similar problem has been solved by Lyster et al. (1959) using a rigorous computer method and it was found that ten stages were needed.

 

Feed (f) Tops (d) Bottoms(b)
\text { Propane, } C _{3} 5 5 0
\text { i-Butane, } iC _{4} 15 15 0
\text { n-Butane, } nC _{4} 25 24 1
\text { i-Pentane, } i C _{5} 20 1 19
\text { n-Pentane, } nC _{5} 35 0 35
100 45 55 kmol
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The top and bottom temperatures (dew points and bubble points) were calculated by the methods illustrated in Example 11.9. Relative volatilities are given by equation 8.30:

 

\alpha_{i}=\frac{K_{i}}{K_{u}}

 

Equilibrium constants were taken from the Depriester charts (Chapter 8).

Relative volatilities

 

\text { Temp. }{ }^{\circ} C Top Bottom Average
65 120
C _{3} 5.5 4.5 5.0
iC _{4} 2.7 2.5 2.6
( K ) nC _{4} 2.1 2.0 2.0
\text { (HK) } iC _{5} 1.0 1.0 1.0
nC _{5} 0.84 0.85 0.85

 

Calculations of non-key flows

Equations 11.50, 11.51, 11.52, 11.53

 

\underline{l_{i}}=\frac{d_{i}}{\alpha_{i}-1} (11.50)

 

\underline{v_{i}}=l_{i}+d_{i} (11.51)

 

\underline{v}_{i}^{\prime}=\frac{\alpha_{i} b_{i}}{\alpha_{ LK }-\alpha_{i}} (11.52)

 

\underline{l}_{i}^{\prime}=v_{i}^{\prime}+b_{i} (11.53)

 

\alpha_{i} d_{i} \underline{l_{i}}=d_{i} /\left(\alpha_{i}-1\right) \underline{\underline{v_{i}}}=\underline{l_{i}}+d_{i}
C _{3} 5 5 1.3 6.3
iC _{4} 2.6 15 9.4 24.4
\Sigma \underline{l_{i}}=10.7 \Sigma \underline{v_{i}}=30.7
\alpha_{i} b_{i} v_{i}^{\prime}=\alpha_{i} b_{i} /\left(\alpha_{ LK }-\alpha_{i}\right) \underline{v_{i}}=\underline{l_{i}}+d_{i}
nC _{5} 0.85 35 25.9 60.9
\Sigma \underline{v_{i}^{\prime}}=25.9 \Sigma \underline{l_{i}^{\prime}}=60.9

 

Flows of combined keys

 

L_{e}=2.5 \times 45-10.7=101.8 (11.46)

 

V_{e}=(2.5+1) 45-30.7=126.8 (11.47)

 

V_{e}^{\prime}=(2.5+1) 45-25.9=131.6 (11.49)

 

L_{e}^{\prime}=(2.5+1) 45+55-60.9=151.6 (11.48)

 

Slope of top operating line

 

\frac{L_{e}}{V_{e}}=\frac{101.8}{126.8}=0.8

 

Slope of bottom operating line

 

\frac{L_{e}^{\prime}}{V_{e}^{\prime}}=\frac{151.6}{131.6}=1.15

 

x_{b}=\frac{\text { flow LK }}{\text { flow }( LK + HK )}=\frac{1}{19+1}=0.05

 

x_{d}=\frac{24}{24+1}=0.96

 

x_{f}=\frac{25}{25+20}=0.56

 

y=\frac{2 x}{1+(2-1) x}=\frac{2 x}{1+x} (11.23)

 

x 0 0.20 0.40 0.60 0.80 1.0
y 0 0.33 0.57 0.75 0.89 1.0

 

The McCabe-Thiele diagram is shown in Figure 11.10.

Twelve stages required; feed on seventh from base.

11.5

Related Answered Questions