Question 17.11: The header mentioned in Example 17.9 is to be built with a s...
The header mentioned in Example 17.9 is to be built with a shortened length L_{1} =12 in. What is done to the header axes for analysis, and what are the stresses at the midpoints of the short side and the long side?
Learn more on how we answer questions.
Calculate the header-geometry properties as follows:
\frac{L_{1}}{H}=\frac{12}{7.25} =1.66
\frac{L_{1}}{h}=\frac{12}{14} =0.86
Since L_{1}/h < 1.0, the axes of the header must be reoriented for analysis. In the new terms, L_{1} =14 in., h=12 in., and H =7.25 in.
The first assumption is that the original flat end closures, which have now become sides, are also 1 in. thick. On that basis, I =0.0833 remains. We have
\alpha=\frac{H}{h}=\frac{7.25}{12} =0.6042
K = 0.6042.
Check if the strengthening factors apply:
\frac{L_{1}}{H}=\frac{14}{7.25} =1.93 C_{1} = 0.99 and C_{2} = 0.99
\frac{L_{1}}{h}=\frac{14}{12} =1.17 C_{1} = 0.62 and C_{2} = 0.68.
Strengthening factors apply to both short side and long side.
Calculate the bending stress at the midpoint of the short side using Eq. (17.41):
\left(S_{ b }\right)_{ N }=\text { Eq. }(17.25) \times C_{1} (17.41)
\left(S_{ b }\right)_{ N }=\frac{(150)(0.5)}{12(0.0833)} \times\left[1.5(7.25)^{2}-(12)^{2} \frac{1+(0.6042)^{3}}{1+0.6042}\right] (0.99)
\left(S_{ b }\right)_{ N } = 2280 psi.
Calculate the bending stress at the midpoint of the long side using Table 17.1, first equation:
\left(S_{ b }\right)_{ M }=\frac{(150)(0.5)(12)^{2}}{12(0.0833)} \times\left[1.5-\frac{1+(0.6042)^{3}}{1+0.6042}\right] (0.62)= 4950 psi.
Table 17.1 Bending stress values in rectangular headers.
Figure | Location of weld between | Bending stress at joint, \pm\left(S_{b}\right)_{j} (psi) |
17.3a | M and Q | \frac{P c}{12 I_{2}}\left\{h^{2}\left[1.5-\left(\frac{1+\alpha^{2} K}{1+K}\right)\right]-6 d_{ j }^{2}\right\} |
17.3a | N and Q | \frac{P_{c}}{12 I_{1}}\left[1.5 H^{2}-h^{2} \frac{\left(1+\alpha^{2} K\right)}{1+K}-6 d_{ j }^{2}\right] |
17.3b | M and Q | \frac{P c}{2 I_{22}}\left\{\frac{h^{2}}{2 N}\left[\left(K_{2}-k_{1} k_{2}\right)+\alpha^{2} k_{2}\left(K_{2}-k_{2}\right)\right]-\frac{h^{2}}{4}+d_{ j }^{2}\right\} |
17.3b | M_{1} and Q_{1} | \frac{P c}{2 I_{2}}\left\{\frac{h^{2}}{2 N}\left[\left(K_{1} k_{1}-k_{2}\right)+\alpha^{2} k_{2}\left(K_{1}-k_{2}\right)\right]-\frac{h^{2}}{4}+d_{ j }^{2}\right\} |
17.3c | A and B | \frac{c}{I_{1}}\left(M_{ A }+\frac{P d_{ j }^{2}}{2}\right) |
17.3c | D and C | \frac{c}{I_{1}}\left[M_{ A }+\frac{P}{2}\left(L^{2}+2 a L-2 a l_{1}-l_{1}^{2}+d_{ j }^{2}\right)\right] |
17.3d | M and Q | \frac{P p h^{2}}{24 Z_{21}}\left[3-2\left(\frac{1+\alpha_{1}^{2} k}{1+k}\right)-\frac{12 d_{ j }^{2}}{h^{2}}\right] |
17.3d | N and Q | \frac{P p}{24 Z_{1}}\left[3 H^{2}-2 h^{2}\left(\frac{1+\alpha_{1}^{2} k}{1+k}\right)-12 d_{j}^{2}\right] |
17.3e | A and B | \frac{1}{Z_{21}}\left(M_{ A }+P \frac{p d_{ j }^{2}}{2}\right) |
17.3e | B and C | \frac{c}{I_{2}}\left(M_{ A }+P \frac{p d_{ j }^{2}}{2}\right) |
17.3e | F and E | \frac{1}{Z_{11}}\left\{M_{ A }+P \frac{p}{2}\left[\left(L+L_{11}\right)^{2}+2 a\left(L+L_{11}-l_{1}-l_{11}\right) -\left(l_{1}+l_{11}\right)^{2}+d_{ j }^{2}\right]\right\} |
17.3e | E and D | \frac{c}{I_{1}}\left\{M_{ A }+P \frac{p}{2}\left[L^{2}+2 L L_{11}+L_{11}^{2}-2 l_{1} l_{11}-l_{11}^{2}-l_{1}^{2} +2 a\left(L+L_{11}-l_{1}-l_{11}\right)+d_{ j }^{2}\right]\right\} |
17.5a | A and B | \frac{P c}{I_{2}}\left(\frac{-L C_{1}}{6 A}+\frac{d_{ j }^{2}}{2}\right) |
17.5b | A and B | \frac{P p}{Z_{11}}\left(\frac{-L C_{2}}{6 A_{3}}+\frac{d_{ j }^{2}}{2}\right) |
Source: Courtesy of American Society of Mechanical Engineers, from Table 13-18.1 of ASME Code VIII-1. |