For the plate design in Example 11.11, estimate the plate efficiency for the plate on which the concentration of acetone is 5 mol per cent. Use the AIChE method.
For the plate design in Example 11.11, estimate the plate efficiency for the plate on which the concentration of acetone is 5 mol per cent. Use the AIChE method.
Plate will be in the stripping section (see Figure 11.7).
Plate dimensions:
\text { active area }=0.38 m ^{2}
\text { length between downcomers (Figure 11.32) (liquid path, } Z_{L} \text { ) }=0.79-2 \times 0.134= 0.52 m,
weir height = 50 mm.
Flow rates, check efficiency at minimum rates, at column base:
\text { vapour }=0.7 \frac{162.3}{3600}=0.032 kmol / s
\text { liquid }=0.7 \frac{811.6}{3600}=0.158 kmol / s
from the MaCable-Thiele diagram (Figure 11.7) at x = 0.05, assuming 60 per cent plate efficiency, y \approx 0.4. The liquid composition, x = 0.05, will occur on around the ninth plate from the bottom, the seventh from the top of the column. The pressure on this plate will be approximately:
9 \times 138 \times 10^{-3} \times 1000 \times 982+101.4 \times 10^{3}=113.6 kPa
say, 1.14 bar
At this pressure the plate temperature will be 79^{\circ} C, and the liquid and vapour physical properties, from PPDS:
liquid
\text { mol. weight }=20.02, \rho_{L}=925 kg / m ^{3}, \mu_{L}=9.34 \times 10^{-3} Nm ^{-2} s \text {, }
\sigma=60 \times 10^{-3} N / m
vapour
\text { mol. weight }=34.04, \rho_{v}=1.35 kg / m ^{3}, \mu_{v}=10.0 \times 10^{-6} Nm ^{-2} s \text {, }
D_{L}=4.64 \times 10^{-9} m ^{2} / s \text { (estimated using Wilke-Chang equation, Chapter } 8 \text { ) }
D_{v}=18.6 \times 10^{-6} m ^{2} / s \text { (estimated using Fuller equation, Chapter } 8 \text { ) }
\text { Vapour, volumetric flow-rate }=\frac{0.032 \times 34.04}{135}=0.81 m ^{3} / s
\text { Liquid, volumetric flow-rate }=\frac{0.158 \times 20.02}{925}=3.42 \times 10^{-3} m ^{3} / s
u_{a}=\frac{0.81}{0.38}=2.13 m / s
F_{v}=u_{a \sqrt{\rho_{v}}}=\sqrt{2.13} m / s
Average width over active surface = 0.38/0.52 = 0.73 m
L=\frac{3.42 \times 10^{-3}}{0.73}=4.69 \times 10^{-3} m ^{2} / s
N _{G}=\frac{\left(0.776+4.57 \times 10^{-3} \times 50-0.24 \times 2.48+105 \times 4.69 \times 10^{-3}\right)}{\left(\frac{10.0 \times 10^{-6}}{1.35 \times 18.8 \times 10^{-6}}\right)^{1 / 2}} = 1.44 (11.71)
Z_{c}=0.006+0.73 \times 10^{-3} \times 50-0.24 \times 10^{-3} \times 2.48 \times 50+1.22 \times 4.69 \times 10^{-3}=18.5 \times 10^{-3} m ^{3} / m ^{2} (11.75)
t_{L}=\frac{18.5 \times 10^{-3} \times 0.52}{4.69 \times 10^{-3}}=2.05 s (11.73)
N _{L}=\left(4.13 \times 10^{8} \times 4.64 \times 10^{-9}\right)^{0.5} \times(0.21 \times 2.48+0.15) \times 2.05=1.9 (11.72)
D_{e}=\left(0.0038+0.017 \times 2.13+3.86 \times 4.69 \times 10^{-3}+0.18 \times 10^{-3} \times 50\right)^{2} =0.0045 m ^{2} / s (11.77)
P_{e}=\frac{0.52^{2}}{0.0045 \times 2.05}=29.3 (11.76)
From the McCabe-Thiele diagram, at x = 0.05, the slope of the equilibrium line = 1.0.
V/L D 0.032/0.158 = 0.20
\text { so, } \frac{m V}{L}=1.0 \times 0.20=0.20
\frac{\left(\frac{m V}{L}\right)}{ N _{L}}=\frac{0.20}{1.9}=0.11
\text { From Figure } 11.15 E_{m v}=0.70
\frac{m V}{L} \cdot E_{m v}=0.2 \times 0.58=0.12
\text { From Figure } 11.16 E_{m V} / E_{m v}=1.02
E_{m V}=0.70 \times 1.02=0.714
So plate efficiency = 71 per cent.
Note: The slope of the equilibrium line is difficult to determine at x = 0.05, but any error will not greatly affect the value of E_{m V}.