Question 12.2: A 2.0 m wide strip foundation carries a wall load of 350 kN/...
A 2.0 m wide strip foundation carries a wall load of 350 kN/m in a soil where γ = 19.0 kN/m³, c′ = 5 kN/m² and φ′ = 23°. The foundation depth is 1.5 m. Determine the factor of safety of this foundation.
Learn more on how we answer questions.
For φ′ = 23° from Table 12.1,
φ′ | N_c | N_q | N_\gamma | φ′ | N_c | N_q | N_\gamma |
0 | 5.14 | 1.00 | 0.00 | 23 | 18.05 | 8.66 | 8.20 |
1 | 5.38 | 1.09 | 0.07 | 24 | 19.32 | 9.60 | 9.44 |
2 | 5.63 | 1.20 | 0.15 | 25 | 20.72 | 10.66 | 10.88 |
3 | 5.90 | 1.31 | 0.24 | 26 | 22.25 | 11.85 | 12.54 |
4 | 6.19 | 1.43 | 0.34 | 27 | 23.94 | 13.20 | 14.47 |
5 | 6.49 | 1.57 | 0.45 | 28 | 25.80 | 14.72 | 16.72 |
6 | 6.81 | 1.72 | 0.57 | 29 | 27.86 | 16.44 | 19.34 |
7 | 7.16 | 1.88 | 0.71 | 30 | 30.14 | 18.40 | 22.40 |
8 | 7.53 | 2.06 | 0.86 | 31 | 32.67 | 20.63 | 25.99 |
9 | 7.92 | 2.25 | 1.03 | 32 | 35.49 | 23.18 | 30.22 |
10 | 8.35 | 2.47 | 1.22 | 33 | 38.64 | 26.09 | 35.19 |
11 | 8.80 | 2.71 | 1.44 | 34 | 42.16 | 29.44 | 41.06 |
12 | 9.28 | 2.97 | 1.69 | 35 | 46.12 | 33.30 | 48.03 |
13 | 9.81 | 3.26 | 1.97 | 36 | 50.59 | 37.75 | 56.31 |
14 | 10.37 | 3.59 | 2.29 | 37 | 55.63 | 42.92 | 66.19 |
15 | 10.98 | 3.94 | 2.65 | 38 | 61.35 | 48.93 | 78.03 |
16 | 11.63 | 4.34 | 3.06 | 39 | 67.87 | 55.96 | 92.25 |
17 | 12.34 | 4.77 | 3.53 | 40 | 75.31 | 64.20 | 109.41 |
18 | 13.10 | 5.26 | 4.07 | 41 | 83.86 | 73.90 | 130.22 |
19 | 13.93 | 5.80 | 4.68 | 42 | 93.71 | 85.38 | 155.55 |
20 | 14.83 | 6.40 | 5.39 | 43 | 105.11 | 99.02 | 186.54 |
21 | 15.82 | 7.07 | 6.20 | 44 | 118.37 | 115.31 | 224.64 |
22 | 16.88 | 7.82 | 7.13 | 45 | 133.88 | 134.88 | 271.76 |
N_c = 18.05, N_q = 8.66, and N_\gamma = 8.20. Given: B = 2.0 m and D_f =1.5 m. For strip foundation, L\gg B. Hence B/L ≈ 0.
Shape Factors
F_{cs} = 1 +\frac{B}{L} \frac{N_q}{N_c}≈1
F_{qs} = 1 +\frac{B}{L}\tan \phi^\prime≈1
F_{\gamma s} = 1 – 0.4\frac{B}{L}≈1
Note that all three shape factors are 1.0 for all strip foundations.
Depth Factors
F_{cd} = 1 + 0.4\frac{D_f}{B}=1+0.4\frac{1.5}{2.0}=1.30
F_{qd}=1+2\tan\phi^\prime(1-\sin \phi^\prime)^2\frac{D_f}{B}=1+2\tan 25(1-\sin 25)^2\frac{1.5}{2} = 1.23
F_{\gamma d} = 1.00
Since there is no inclination in the load, all three inclination factors (F_{ci}, F_{qi}, and F_{\gamma i}) are unity.
From Eq. (12.7), the ultimate bearing capacity is given by
= (5.0)(18.05)(1) (1.30)(1) + (1.5\times 19.0)(8.66)(1)(1.23)(1) + 0.5(19.0)(2)(8.20)(1)(1)(1)
= 576.7 kN/m²
The pressure applied on the soil is 350/2 = 175.0 kN/m². Therefore, the factor of safety is
FS = \frac{576.7}{175} = 3.30