Question 12.5: A 2 m × 3 m spread foundation placed at a depth of 2 m carri...

A 2 m × 3 m spread foundation placed at a depth of 2 m carries a vertical load of 3000 kN and moment of 300 kN⋅m, as shown in Figure 12.8, Determine the factor of safety.

12.8
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eq. (12.17), eccentricity e =\frac{M}{Q}=\frac{300}{3000} = 0.10 m. Therefore, B′ = B – 2e = 2.00 – 2 × 0.1 = 1.80 m. Also L′ = L = 3 m.
For φ′ = 32° from Table 12.1,

φ′ N_c N_q N_\gamma φ′ N_c N_q N_\gamma
0 5.14 1.00 0.00 23 18.05 8.66 8.20
1 5.38 1.09 0.07 24 19.32 9.60 9.44
2 5.63 1.20 0.15 25 20.72 10.66 10.88
3 5.90 1.31 0.24 26 22.25 11.85 12.54
4 6.19 1.43 0.34 27 23.94 13.20 14.47
5 6.49 1.57 0.45 28 25.80 14.72 16.72
6 6.81 1.72 0.57 29 27.86 16.44 19.34
7 7.16 1.88 0.71 30 30.14 18.40 22.40
8 7.53 2.06 0.86 31 32.67 20.63 25.99
9 7.92 2.25 1.03 32 35.49 23.18 30.22
10 8.35 2.47 1.22 33 38.64 26.09 35.19
11 8.80 2.71 1.44 34 42.16 29.44 41.06
12 9.28 2.97 1.69 35 46.12 33.30 48.03
13 9.81 3.26 1.97 36 50.59 37.75 56.31
14 10.37 3.59 2.29 37 55.63 42.92 66.19
15 10.98 3.94 2.65 38 61.35 48.93 78.03
16 11.63 4.34 3.06 39 67.87 55.96 92.25
17 12.34 4.77 3.53 40 75.31 64.20 109.41
18 13.10 5.26 4.07 41 83.86 73.90 130.22
19 13.93 5.80 4.68 42 93.71 85.38 155.55
20 14.83 6.40 5.39 43 105.11 99.02 186.54
21 15.82 7.07 6.20 44 118.37 115.31 224.64
22 16.88 7.82 7.13 45 133.88 134.88 271.76

N_c = 35.49, N_q = 23.18, and N_\gamma = 30.22.

Shape Factors

F_{cs} = 1 +\frac{B^\prime}{L} \frac{N_q}{N_c}=1+\frac{1.8}{3}\times \frac{23.18}{35.49}=1.39

F_{qs} = 1 +\frac{B^\prime}{L}\tan \phi^\prime=1+\frac{1.8}{3}\tan 32=1.37

F_{\gamma s} = 1 – 0.4\frac{B^\prime}{L}=1-0.4\times \frac{1.8}{3}=0.76

Depth Factors

F_{cd} = 1 + 0.4\frac{D_f}{B}=1+0.4\times \frac{2.0}{2.0}=1.40

F_{qd}=1+2\tan\phi^\prime(1-\sin \phi^\prime)^2\frac{D_f}{B}=1+2\tan 32(1-\sin 32)^2\times \frac{2}{2} = 1.28
F_{qi} = 1.00

Inclination factors are F_{ci}=1, F_{qi}=1, and F_{\gamma i}=1.
From Eq. (12.20), the ultimate bearing capacity is given by

q_u^\prime = c^\prime N_cF_{cs}F_{cd}F_{ci} + qN_qF_{qs}F_{qd}F_{qi} +0.5 \gamma B^\prime N_\gamma F_{\gamma s}F_{\gamma d}F_{\gamma i}

= (5)(35.49)(1.39) (1.40)(1) + (2\times 18.5)(23.18)(1.37)(1.28)(1) + 0.5(18.5\times 1.8)(30.22)(0.76)(1.0)(1)
= 2231.17 kN/m²

From Eq. (12.21), Q_{ult} = q_u^\prime \times B^\prime L = 2231.7\times 1.8\times 3 = 12951.2 kN
FS = 12951.9/3000 = 4.01

 

Related Answered Questions