Heat-transfer coefficient
\text { Ideal bank coefficient, } h_{o c}
A_{s}=\frac{25-20}{25} \times 894 \times 356 \times 10^{-6}=0.062 m ^{2} (12.21)
G_{s}=\frac{100,000}{3600} \times \frac{1}{0.062}=448 kg / s m ^{2}
R e=\frac{G_{s} a_{o}}{\mu}=\frac{440 \times 20 \times 10}{0.34 \times 10^{-3}}=26,353
\text { From Figure } 12.31 j_{h}=5.3 \times 10^{-3} \text {. }
Prandtl number, from Example 12.1 = 5.1
\text { Neglect viscosity correction factor }\left(\mu / \mu_{w}\right) \text {. }
h_{o c}=\frac{0.19}{20 \times 10^{-3}} \times 5.3 \times 10^{-3} \times 26,353 \times 5.1^{1 / 3}=2272 W / m ^{2{ }^{\circ} C } (12.20)
Tube row correction factor, F_{n}
\text { Tube vertical pitch } p_{t}^{\prime}=0.87 \times 25=21.8 mm
\text { Baffle cut height } H_{c}=0.25 \times 894=224 mm
\text { Height between baffle tips }=894-2 \times 224=446 mm
N_{c v}=\frac{446}{21.8}=20
\text { From Figure } 12.32 F_{n}=1.03 \text {. }
\text { Window correction factor, } F_{W}
H_{b}=\frac{826}{2}-894(0.5-0.25)=190 mm (12.38)
“Bundle cut” = 190/826 = 0.23 (23 per cent)
From Figure 12.41 at cut of 0.23
R_{a}^{\prime}=0.18
\text { Tubes in one window area, } N_{w}=918 \times 0.18=165 (12.41)
\text { Tubes in cross-flow area, } N_{c}=918-2 \times 165=588 (12.42)
R_{w}=\frac{2 \times 165}{918}=0.36 (12.43)
\text { From Figure } 12.33 F_{w}=1.02 \text {. }
\text { Bypass correction, } F_{b}
A_{b}=(894-826) 356 \times 10^{-6}=0.024 m ^{2} (12.47)
\frac{A_{b}}{A_{s}}=\frac{0.024}{0.062}=0.39
F_{b}=\exp [-1.35 \times 0.39]=0.59 (12.30)
Very low, sealing strips needed; try one strip for each five vertical rows.
\frac{N_{s}}{N_{c v}}=\frac{1}{5}
F_{b}=\exp \left[-1.35 \times 0.39\left(1-\left(\frac{2}{5}\right)^{1 / 3}\right)\right]=0.87 (12.30)
\text { Leakage correction, } F_{L}
Using clearances as specified in the Standards,
\text { tube-to-baffle } \frac{1}{32} \text { in. }=0.8 mm
\text { baffle-to-shell } \frac{3}{16} \text { in. }=4.8 mm
A_{t b}=\frac{0.8}{2} \times 20 \pi(918-165)=18.9 \times 10^{3} mm ^{2}=0.019 m ^{2} (12.45)
\text { From Figure } 12.41,25 \text { per cent cut }(0.25), \theta_{b}=2.1 \text { rads. }
A_{s b}=\frac{4.8}{2} \times 894(2 \pi-2.1)=8.98 \times 10^{3} mm ^{2}=0.009 m ^{2} (12.46)
A_{L}=(0.019+0.009)=0.028 m ^{2}
\frac{A_{L}}{A_{s}}=\frac{0.028}{0.062}=0.45
\text { From Figure } 12.35 \beta_{L}=0.3 \text {. }
F_{L}=1-0.3\left[\frac{(0.019+2 \times 0.009)}{0.028}\right]=0.60 (12.31)
Shell-side coefficient
h_{s}=2272 \times 1.03 \times 1.02 \times 0.87 \times 0.60=\underline{\underline{\underline{1246} W / m ^{2}{ }^{\circ} C }} (12.27)
Appreciably lower than that predicted by Kern’s method.
Pressure drop
Cross-flow zone
\text { From Figure } 12.36 \text { at } \operatorname{Re}=26,353 \text {, for } 1.25 \Delta \text { pitch, } j_{f}=5.6 \times 10^{-2}
u_{s}=\frac{G_{s}}{\rho}=\frac{448}{750}=0.60 m / s
\text { Neglecting viscosity term }\left(\mu / \mu_{w}\right) \text {. }
\Delta P_{i}=8 \times 5.6 \times 10^{-2} \times 20 \times \frac{750 \times 0.6^{2}}{2}=1209.6 N / m ^{2} (12.33)
(\alpha=4.0) (12.30)
F_{b}^{\prime}=\exp \left[-4.0 \times 0.39\left(1-\left(\frac{2}{5}\right)^{1 / 3}\right)\right]=0.66
\text { From Figure } 12.38 \beta_{L}^{\prime}=0.52 \text {. }
F_{L}^{\prime}=1-0.52\left[\frac{(0.019+2 \times 0.009)}{0.028}\right]=0.31 (12.31)
\Delta P_{c}=1209.6 \times 0.66 \times 0.31=248 N / m ^{2}
Window zone
\text { From Figure } 12.41 \text {, for baffle cut } 25 \text { per cent }(0.25) R_{a}=0.19 .
A_{w}=\left(\frac{\pi}{4} \times 894^{2} \times 0.19\right)-\left(165 \times \frac{\pi}{4} \times 20^{2}\right)
=67.4 \times 10^{3} mm ^{2}=0.067 m ^{2} (12.44)
u_{w}=\frac{100,000}{3600} \times \frac{1}{750} \times \frac{1}{0.067}=0.55 m / s
u_{z}=\sqrt{u_{w} u_{s}}=\sqrt{0.55 \times 0.60}=0.57 m / s
N_{w v}=\frac{190}{21.8}=8 (12.40)
\Delta P_{w}=0.31(2+0.6 \times 8) \frac{750 \times 0.57^{2}}{2}=257 N / m ^{2} (12.34)
End zone
\Delta P_{e}=1209.6\left[\frac{(8+20)}{20}\right] 0.66=1118 N / m ^{2} (12.36)
Total pressure drop
\text { Number of baffles } N_{b}=\frac{4830}{356}-1=12
\begin{aligned}\Delta P_{s}=2 \times 1118+248(12-1)+12 \times 257 &=8048 N / m ^{2} \\&=\underline{\underline{8.05 kPa }}(1.2 psi )\end{aligned} (12.37)
This for the exchanger in the clean condition. Using the factors given in Table 12.7 to estimate the pressure drop in the fouled condition
Table 12.7. Ratio of fouled to clean pressure drop |
Fouling coefficient \left( W / m ^{2}{ }^{\circ} C \right) |
Shell diameter/baffle spacing |
1.0 |
2.0 |
5.0 |
Laminar flow |
|
6000 |
1.06 |
1.20 |
1.28 |
2000 |
1.19 |
1.44 |
1.55 |
<1000 |
1.32 |
1.99 |
2.38 |
Turbulent flow |
|
6000 |
1.12 |
1.38 |
1.55 |
2000 |
1.37 |
2.31 |
2.96 |
<1000 |
1.64 |
3.44 |
4.77 |
\Delta P_{s}=1.4 \times 8.05=11.3 kPa
Appreciably lower than that predicted by Kern’s method. This shows the unsatisfactory nature of the methods available for predicting the shell-side pressure drop.