Question 12.5: Estimate the heat-transfer coefficient for steam condensing ...

Estimate the heat-transfer coefficient for steam condensing on the outside, and on the inside, of a 25 mm o.d., 21 mm i.d. vertical tube 3.66 m long. The steam condensate rate is 0.015 kg/s per tube and condensation takes place at 3 bar. The steam will flow down the tube.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Physical properties, from steam tables:

 

\text { Saturation temperature }=133.5^{\circ} C

 

\rho_{L}=931 kg / m ^{3}

 

\rho_{v}=1.65 kg / m ^{3}

 

k_{L}=0.688 W / m ^{\circ} C

 

\mu_{L}=0.21 mNs / m ^{2}

 

P r_{c}=1.27

 

Condensation outside the tube

 

\Gamma_{v}=\frac{0.015}{\pi 25 \times 10^{-3}}=0.191 kg / s m

 

R e_{c}=\frac{4 \times 0.191}{0.21 \times 10^{-3}}=3638

 

From Figure 12.43

 

\frac{h_{c}}{k_{L}}\left[\frac{\mu_{L}^{2}}{\rho_{L}\left(\rho_{L}-\rho_{v}\right) g}\right]^{1 / 3}=1.65 \times 10^{-1}

 

\begin{aligned}h_{c} &=1.65 \times 10^{-1} \times 0.688\left[\frac{\left(0.21 \times 10^{-3}\right)^{2}}{931(931-1.65) 9.81}\right]^{-1 / 3} \\&=6554 W / m ^{2}{ }^{\circ} C\end{aligned}

 

Condensation inside the tube

 

\Gamma_{v}=\frac{0.015}{\pi 21 \times 10^{-3}}=0.227 kg / s m

 

R e_{c}=\frac{4 \times 0.227}{0.21 \times 10^{-3}}=4324

 

From Figure 12.43

 

\begin{aligned}h_{c} &=1.72 \times 10^{-1} \times 0.688\left[\frac{\left(0.21 \times 10^{-3}\right)^{2}}{931(931-1.65) 9.81}\right]^{-1 / 3} \\&=6832 W / m ^{2}{ }^{\circ} C\end{aligned}

 

Boyko-Kruzhilin method

 

\text { Cross-sectional area of tube }=\left(21 \times 10^{-3}\right)^{2} \frac{\pi}{4}=3.46 \times 10^{-4} m ^{2}

 

Fluid velocity, total condensation

 

u_{t}=\frac{0.015}{931 \times 3.46 \times 10^{-4}}=0.047 m / s

 

R e=\frac{\rho u d_{i}}{\mu_{L}}=\frac{931 \times 0.047 \times 21 \times 10^{-3}}{0.21 \times 10^{-3}}=4376

 

h_{i}^{\prime}=0.021 \times \frac{0.688}{21 \times 10^{-3}}(4376)^{0.8}(1.27)^{0.43}=624 W / m ^{2}{ }^{\circ} C (12.53)

 

h_{c}=624\left[\frac{1+\sqrt{931 / 1.65}}{2}\right]=7723 W / m ^{2}{ }^{\circ} C (12.54)

 

\text { Take higher value, } h_{c}=7723 W / m ^{2}{ }^{\circ} C
12.5

Related Answered Questions